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Phase 2 Abstract 
Most machine learning research has focused on problems where training data is 

abundant and learning amounts to searching for statistically justified regularities in the 
data. When data is extremely limited, perhaps a single training example, such learning 
strategies are simply not applicable. In such cases, the only hope for robustly learning is 
to leverage prior knowledge sources in order to draw justified generalizations. This report 
describes a pilot study conducted at Oregon State University, where we consider such a 
learning setting in the domain of furniture assembly. In particular, the goal is for our 
learner to observe a single assembly demonstration and then, by interacting with rich 
knowledge sources, output an assembly plan that generalizes to new situations.  For this 
problem, example knowledge sources include a physical simulator and configuration-
space planner, among others. Such a system could then be used in the field to teach 
and/or assist others to perform the assembly task. From a scientific perspective, our study 
highlights capabilities that a general “knowledge based” learner would need to have in 
order to solve our problem and others like it. From an application perspective, our study 
provides an architecture and partial implementation of an assembly task learner, 
highlighting the main technical barriers. In addition, we provide a user study showing the 
potentially large benefit that such a system would have on assembly time.  
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Phase 1: 
Machine Learning for the Knowledge Plane:  Technology 

Assessment and Research Scenarios 

1. Introduction 
In 2003, Dave Clark (MIT) proposed a new abstract internet layer called the 

Knowledge Plane (KP) whose purpose is to support network applications—such as 
general fault management, self configuration, and performance management—that 
require distributed, self-aware cognitive processing.  The heart of this idea is to combine 
techniques from machine learning with new architectural concepts in networking to make 
the internet self-aware and self-managing.  This will require revolutionary advances in 
both statistical learning methods and network protocol design and implementation. 

 
To explore this idea further and develop it into a DARPA program, several groups of 

researchers were recruited to perform a seedling study.  We were one of those groups.  
Our contribution to the seedling study was threefold.  First, we co-authored a technical 
report reviewing the current state of the art in machine learning and assessing the 
appropriateness of machine learning techniques for the Knowledge Plane.  Second, we 
studied the problems currently confronting the internet, both at the edge of the network 
(where end users operate) and also in the center of the network (where internet service 
providers operate and interact).  We studied methods for diagnosing networking 
problems.  We spent considerable time studying a scenario developed by Jennifer 
Rexford in which a routing problem is introduced by one ISP when they make a 
typographical error in their Border Gateway Protocol (BGP) routing tables.  Finally, we 
conducted a detailed study of the internet Domain Name System and the ways in which it 
can be misconfigured, and we studied methods for applying learning and model-based 
reasoning to diagnose DNS problems. 

2. Methods and Procedures 
For our review report, Pat Langley and I studied existing articles in the machine 

learning literature (several of which we originally wrote) to identify existing work that 
would be relevant to the Knowledge Plane concept.  We also performed thought 
experiments to develop ideas for how machine learning methods could be useful for the 
KP. 

 
For our general study of internet problems and diagnosis approaches, we read several 

papers recommended by other seedling researchers, particularly Jennifer Rexford.  These 
included the following papers: 

Labovitz, C., Ahuja, A., Jahanian, F. (1998). Experimental Study of Internet Stability 
and Wide-Area Backbone Failures.  Tech Report CSE-TR-382-98.  Department of 
Electrical Engineering and Computer Science, University of Michigan. 

Feamster, N., Winick, J., Rexford, J. (unpublished manuscript) BGP emulation for 
domain-wide route prediction.  Shared with us by J. Rexford. 
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Williams, B. C., Ingham, M. D., Chung, S. H., Elliott, P. H. (2003).  Proceedings of 
the IEEE: Special Issue on Modeling and Design of Embedded Software, 91(1), 
212-237. 

Akinci, B., Fischer, M., Levitt, R., Carlson, R. (2000).  Formalization and 
automation of time-space conflict analysis.  CIFE Working Paper 59. Center for 
Integrated Facility Engineering, Stanford University. 

 
Our work on model-based diagnosis for the Domain Name System, we read the 

following books and papers: 
Abbey, J. Mulvaney, M. Ganymede: An Extensible and Customizable Directory 

Management Framework. Proceedings of the 12th Systems Administration 
Conference (LISA'98). 1998.  

Albitz, P., Liu, C. DNS and BIND. O'Reilly. April, 2001.  
Barham, P., Isaacs, R., Mortier, R., Narayanani, D. Magpie: online modelling and 

performance-aware systems. Proceedings of 9th Workshop on Hot Topics in 
Operating Systems (HOTOS IX). 2003.  

Brownlee, N., Claffy, kc, Nemeth, E. DNS Measurements at a Root Server. 
Proceedings of the IEEE 2001 Global Telecommunications Conference. IEEE, 
2001.  

Chen, C.S., Tseng, S.S., Liu, C.L., Ou, C.H. Building a DNS Ontology using 
METHONTOLOGY and Protégé-2000. Proceedings of the 2002 International 
Computer Symposium (ICS2002) Workshop on Artificial Intelligence.  

Chen, M., Kiciman, E., Fratkin, E., Brewer, E., and Fox., A. Pinpoint: Problem 
determination in large, dynamic, Internet services. Proceedings of International 
Conference on Dependable Systems and Networks (IPDS Track), pages 595-604, 
2002.  

Danzig, P., Obraczka, K., Kumar, A. An Analysis of Wide-Area Name Server 
Traffic. Proceedings of the ACM SIGCOMM'92 Conference. ACM, 1992.  

Giap, C. S., Kadobayashi, Y., Yamaguchi, S. Zero Internet Administration 
Approach: the case of DNS. Proceedings of the 13th International Conference on 
Information Networking (ICOIN'98), January 21-23, 1998.  

Harvey, B. DNS Installation and Configuration. Tech Report. 2003  
Huck, P., Butler, M., Gupta, A., Feng, M. A Self-Configuring and Self-

Administering Name System with Dynamic Address Assignment. ACM 
Transactions on Internet Technology, Vol. 2, No. 1, February 2002, Pages 14-46.  

Koller, D., Levy, A., and Pfeffer, A. P-CLASSIC: A tractable probabilistic 
description logic. In Proceedings AAAI-97, pages 390–397, 1997.  

Langfeldt, N. Troubleshooting DNS. Chapter 6 of The Concise Guide of DNS and 
BIND. QUE, 2001.  

Lewis, L. Managing Computer Networks, A Case-Based Reasoning Approach. 
Artech House. 1995  

Ogle, D. et al. Canonical Situation Data Format: The Common Base Event. October, 
2003.  

 
We then configured a set of four computers to mimic the top levels of the DNS 

hierarchy and to mimic end-user computers at the edge of the DNS hierarchy.  This 
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helped us to understand better how the DNS works.  We then performed experiments on 
this mock-up network in which we injected misconfiguration faults and observed the 
resulting symptoms in the network. 

 
With the help of the network administrators at Oregon State University, we 

monitored all outgoing DNS queries from Oregon State University for a week and 
analyzed this data.  We applied various DNS tools to analyze the DNS configuration at 
Oregon State. 

3. Results and Discussion 

3.1 Technology Assessment Document 
Working with Pat Langley, we wrote and delivered a document entitled “Machine 

Learning for Cognitive Networks: Technology Assessment and Research Challenges” 
(attached as Appendix B).   This document described the following problem formulations 
studied in the machine learning literature: 

1. Learning for classification and regression.   The goal here is to predict some 
value y given some input object x.  A related goal is to predict the rest of x given 
some part of x.  A third formulation is to predict the probability P(x) of a given 
event x.   

2. Learning for planning and acting.  This includes iteratively picking an action a 
to execute given the observed current state s of the environment and some overall 
goal.  A second formulation involves choosing a sequence <a1, a2, …, an> of 
actions given the starting state and the goal.  A third formulation is to find some 
state s that optimizes an objective function J(s). 

3. Learning for interpretation and understanding.  The goal here is to parse a 
data stream into a tree-structured set of events or activities. 

Our paper also reviewed several problem solving tasks that could arise in the area of 
cognitive networking.  These included the following: 

1. Anomaly detection and fault diagnosis.  The central task of the knowledge 
plane is to detect anomalies and faults.  Machine learning methods can be applied 
to learn what “normal” network configurations, network traffic, etc. look like and 
thereby detect anomalous network traffic.  For fault diagnosis, supervised 
machine learning could be applied to learn rules mapping from sets of symptoms 
to possible causes.  Alternatively, learning could be applied to learn explanatory 
or causal models to explain how faults lead to the observed symptoms or 
anomalies.  Finally, diagnosis often requires making active probes or 
measurements (e.g., injecting traffic into a network to see how it responds).  
Machine learning could be applied to learn the background probabilities of 
different faults, the cost of different probes, and the probability that a particular 
fault gives rise to a particular probe outcome. 

2. Responding to intruders and worms.  Intrusion and worm detection can be 
divided into two tasks:  (a) recognizing known intrusion exploits and worms and 
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(b) detecting new intrusion methods and new worms.  Task (a) is an instance of 
learning for interpretation:  the system must learn to detect the sequence of events 
corresponding to an intruder or worm, even if they are mixed together with other 
events intended to mask the intrusion.  Task (b) is another instance of anomaly 
detection. 

3. Network configuration and optimization.  We identified a spectrum of 
configuration and optimization tasks ranging from simple parameter selection 
through compatible parameter configuration, topological configuration, and 
component selection and configuration.  Aside from simple parameter selection, 
there has been little machine learning research on these problems. 

The conclusion from this study was that while existing machine learning methods 
could be of great help in detecting and diagnosing problems, the problem of learning for 
configuration and optimization is an important direction for future research.  Hence, two 
DARPA programs are conceivable.  One program would fund research on adapting 
existing machine learning methods to problems of anomaly detection, fault diagnosis, and 
intrusion detection.  A second program could fund research on new learning algorithms 
for configuration and optimization. 

The report identified additional research challenges for machine learning arising out 
of the Knowledge Plane domain.  These included the following: 

1. Making machine learning more autonomous.  Existing learning methods rely 
on careful engineering of the representation, the choice of algorithm, and so forth.  
The knowledge plane requires a more autonomous learning capability that can 
operate in real time without continuous knowledge engineering. 

2. Learning online.  Most existing learning methods learn off-line from data 
collected in advance.  The knowledge plane requires learning online from data 
gathered from the “live” internet. 

3. Learning in changing environments.  Existing learning methods assume that the 
mapping from inputs to outputs is fixed and not changing over time.  However, 
network conditions in the internet are changing rapidly in response to the growth 
of the size of the network, the amount and type of traffic in the network, and the 
active attempts of intruders to elude existing counter-intrusion tools. 

4. Distributed learning.  Existing learning methods are centralized.  All data is 
collected, pooled in a central location, and then analyzed by the learning 
algorithms.  The Knowledge Plane requires distributed learning both because of 
the sheer size of the network and also because data may be proprietary or private, 
so it cannot be shared in a central location. 

5. Knowledge-rich learning.  Existing learning methods are knowledge-lean.  The 
Knowledge Plane requires methods that can exploit existing knowledge about 
internet protocols and management policies rather than having to rediscover these. 

6. Learning declarative models.  A natural direction to explore for analysis and 
configuration of the internet is model-based programming.  These techniques 
were developed by NASA for the Deep Space One mission, in which a space craft 
was controlled autonomously by an on-board diagnosis, repair, and scheduling 
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system.  An important direction for future research is to develop methods for 
learning the kinds of models required for model-based diagnosis and 
configuration. 

3.2 BGP Prepending Typo Scenario 
Working with Jennifer Rexford (AT&T) we developed a scenario for diagnosing a 

BGP prepending typo misconfiguration.  The BGP protocol is used to control the high-
level routing of packets in the internet.  The internet is divided into regions called 
Autonomous Systems (ASes).   Each AS has a number, and a path through a sequence of 
ASes is represented by a sequence of AS numbers.  Each AS uses the BGP protocol to 
advertise ranges of internet addresses to which it can deliver packets (directly or 
indirectly).  Each advertisement consists of an IP address range and a sequence of AS 
numbers describing the path along which packets will be sent to reach those IP addresses.  
Unfortunately, the Border Gateway Protocol does not provide a way to indicate the “cost” 
of sending packets along an AS path.  The only measure of the cost of a path is the 
number of AS numbers in the path.  One way to signal that a path exists but is expensive 
is to “prepend” an AS number multiple times.  For example, Autonomous System 
number 43 might advertise that it can reach IP address range 55.22.*.* by following the 
path 43 43 43 43 2332 5591.  The four 43s are used to make this path artificially long 
(and therefore, encourage the packets destined for 55.22.*.* to take a different route).  
Prepending requires manual editing of a configuration file on the border gateways, and a 
typographical error can result in paths that cannot reach the indicated addresses.  So for 
example, if “43” were mistyped as “34”, the AS path would become 34 34 34 43 2332 
5591, which would send the packet to AS 34 which might not be able to reach 55.22.*.*.  
This results in lost packets and a cascade of potential failures. 
 

To diagnose a prepending error, it is necessary to compare advertised paths with the 
known connectivity of the internet.  For example, if AS 34 is not directly connected to 
AS 43, then this means the path is bad.  There is no central authoritative “map” of 
internet connectivity.  Instead, there are some internet resources, such as routeviews.org, 
which collect BGP advertisements and analyze them to construct a connectivity map.  
Consulting routeviews.org for each routing decision is not feasible, so a method is needed 
for detecting routing problems, identifying cases in which prepending typos may be the 
cause, and then verifying them at routeviews.org.  We developed a scenario that 
described the sequence of inferences that would need to occur including the sequence of 
passive and active probes or data measurements that would need to be made. 

 
We drew three conclusions from this study.  First, model-based reasoning is an 

important method for diagnosing routing problems.  When diagnosing BGP problems, 
Dr. Rexford clearly applies a very strong model of how BGP works and how network 
administrators enforce routing policies.  Second, existing model-based methods are not 
adequate for reasoning about the internet, because they assume that the structure 
(“anatomy”) of the system is fixed during diagnosis, whereas the structure of the internet 
is unknown and changing rapidly.  A third conclusion is that while machine learning 
could contribute to making diagnosis more efficient, it is not the key technology for 
advancing the Knowledge Plane.  Instead, it seems that model-based diagnosis, suitably 
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extended, will be the key to performing rapid, reliable diagnosis of internet 
misconfigurations. 

3.3 DNS Diagnosis Study 
In consultation with Bob Braden and Ted Faber of ISI, we performed a detailed 

study of approaches for diagnosis DNS misconfigurations.  The goal of this study was to 
assess how well existing methods of diagnosis could be applied to a relatively simple part 
of the internet protocol suite.  The Domain Name System (DNS) is a distributed set of 
millions of servers that is responsible for mapping symbolic domain names (e.g., 
www.yahoo.com) into internet protocol (IP) addresses, such as 216.109.118.71.   

 
To study the Domain Name System, we configured a set of four computers in our lab 

(isolated from the real internet) to implement a version of the top level of the DNS 
including the root DNS servers, the top-level domains, the second-level domains, and 
some ordinary end-user machines.  We then wrote scripts to inject various kinds of 
configuration faults into this miniature internet.  The configuration faults were based on 
faults listed in standard DNS textbooks and how-to manuals.  For each fault, we 
identified a set of symptoms that it creates, and we built a fault-symptom table (see 
Appendix A).  One of the questions we sought to answer was whether it would be 
possible to build a fault-symptom table or whether the relationship between faults and 
symptoms is so complex and dynamic that a model-based approach is required.  Our 
tentative conclusion is that for diagnosing standard DNS faults, a model-based approach 
is not required.  A model-based approach might still be desirable because (a) models are 
easier to maintain over time than fault tables and (b) models can give useful explanations 
to the user about how the fault causes the symptoms, whereas the fault table does not 
represent this information. 

 
Our conclusion that fault tables might be sufficient is preliminary, because we ran 

out of time and money before we had finished our experiments.  In particular, the 
following steps still need to be performed to verify our preliminary conclusions: 

1. Finish building the “miniature internet”.   Our miniature internet does not 
currently support second-level domains, nor does it include dynamic DNS. 

2. Finish writing the “fault injection” scripts to inject all known faults. 

3. Build an infrastructure for parsing log files and performing active measurements 
(probes). 

4. Build an automated diagnostic system to diagnose these faults.  This system 
would use the DNS fault table that we have constructed by hand.  If it can 
correctly diagnose all of the faults we inject, then that would support our claim 
that a simple fault table is sufficient for DNS diagnosis. 

While performing this study, we noticed another issue that could be important to 
explore.  When a DNS server answers a query (e.g., “What is the IP address for 
yahoo.com?”), it provides an IP address (216.109.118.71) and a Time-To-Live (TTL) that 
specifies how long it is safe to cache this IP address.  Typical TTL values are 1-3 days.  
During this time, if the user needs the IP address of yahoo.com, he can obtain it from the 
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cache (which is typically stored on the user’s own computer and also on DNS servers 
within the campus, firm, or ISP).  After the TTL expires, the user’s computer must again 
make a DNS query to determine the IP address.  This query typically goes to one of the 
root name servers (of which there are only a small number, worldwide).  We noticed that 
several internet sites are using very small TTLs (on the order of 5 minutes).  We 
speculate that they are doing this for load-balancing, since they can change the mapping 
from domain names to IP addresses dynamically every 5 minutes.  But a side-effect of 
this policy is that they are creating a heavy load on the root domain name servers.  This 
could be slowing down all domain name lookups worldwide.  It would be interesting to 
measure this and see whether it is effectively a form of “cost shifting” where these 
internet sites are shifting the cost of load balancing onto the users of the internet. 

4. Conclusions 
We review the main conclusions of our seedling study here. 

First, we determined that existing machine learning techniques could be directly 
adapted to address problems in anomaly detection and diagnosis.  Further research would 
be needed to develop new techniques suitable for configuration and optimization of 
network parameters. 

Second, we determined that model-based reasoning methods have potential for 
supporting the kinds of reasoning required by the Knowledge Plane, particularly in the 
complex BGP prepending scenario.  For such scenarios, it is difficult to imagine a fixed 
fault table that could predict all of the symptoms that could result from a prepending 
error. 

Third, we reached the preliminary conclusion that model-based reasoning is not 
required for diagnosing DNS faults.  Instead, we believe that a fault table would be 
sufficient.  However, we were not able to complete the implementation of a diagnostic 
system based on fault tables to verify this conclusion. 
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Phase 2-Part 1: 
Machine Learning for the Knowledge Plane: Technology 

Assessment and Research Scenarios II 

1. Introduction 
 

Since June 2003, we have been carrying out seedling research to assess the potential benefits 
and technical feasibility of a DARPA-funded effort in cognitive networking.  The goal of 
cognitive networking is to enable the Internet (both the commercial Internet and also mission-
centered military networks) to become self-configuring, self-diagnosing, and self-tuning so that 
the network is more efficient, more reliable, and responds better to unanticipated problems.   Our 
initial research efforts have focused on identifying the relevant ideas and technology within 
cognitive systems and computer networking research.  The conclusions of our initial efforts are 
the following: 
 

1. The most promising fundamental technology for cognitive networking is model-
based monitoring and diagnosis.  The central feasibility question for cognitive 
networking is whether model-based monitoring and diagnosis can be extended to 
deal with the dynamics of the Internet. 

 
2. An untapped source of power for Internet monitoring and diagnosis is the 

capability of vast numbers of computing devices to pool their observations to 
rapidly localize, diagnose, and repair problems.  A central feasibility question for 
cognitive networking is whether there is a way to harness distributed problem 
reports to perform rapid localization and diagnosis, or whether the cost of 
managing this information is too great to make it useful. 

 
3. A potential advantage of cognitive networking would be the ability of the Internet 

to tune itself automatically to meet the missions of different local parts of the 
Internet. A central question for cognitive networking is whether it is feasible and 
worthwhile to have sub networks tune their configuration and communication 
protocols automatically to support mission-specific goals. 

 
In this report, we provide a summary of our recent effort into study the three questions 

above, bearing on the feasibility of cognitive networking.  To focus our study, we have chosen 
to investigate whether model-based technique can be used to diagnose problems in the current 
Domain Name System (DNS) in a distributed manner.  In particular, we have built an 
experimental test bed and designed a set of algorithms to test the following hypotheses as 
proposed in 2003. 
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1.1 Hypotheses 
 

A. Model-based reasoning can be extended to support monitoring and diagnosis of DNS 
problems. 
 

B. A distributed system of model-based reasoning agents (diagnostic agent) can be 
coordinated to support distributed monitoring and diagnosis of DNS problems.  
 

C. Problem reports aggregated from end-user computers can reduce or eliminate the need 
for diagnostic agents to make active probes during diagnosis.  
 

D. Feedback provided by diagnostic agents can guide the automatic tuning of DNS 
parameters to meet local mission-specific goals. 

1.2 Deliverables 
 

A. DNS ontology: A machine understandable and explicit representation of the conceptual 
layer that will facilitate a higher-level representation of DNS settings enabling the 
application of high-level reasoning techniques. 
 

B. DNS configuration model: A representation of the space of legal and illegal 
configurations of a DNS server. 
 

C. DNS structural model: Topology of a domain name system in terms of interconnected 
DNS servers and the interactions among them. This model will cover the interactions 
underlying the intended behavior model. 
 

D. DNS behavioral model: Logical representation of how a DNS server works and evolves 
over time according to different parameter settings. 
 

E. DNS symptom database: A high level representation of inconsistencies between the 
observed behavior and the predicted normal behavior of the system 

 
F. A DNS sensor feed that allows the use of feedback provided by multiple endpoints to 

improve diagnostic speed and accuracy. 
 

G. A collection of DNS performance metrics in terms of associated traffic and cache 
statistics. 
 

H. A tool for the creation of reconfigurable DNS settings. This tool will provide a 
collection of DNS scenarios to test our algorithms.  
 

I. A set of distributed diagnosis algorithms. These algorithms will constitute diagnostic 
agents' inner logic. 
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2. Methods and Procedures 
 

To validate the above hypotheses, the research team comprised of Prof. Thomas G. 
Dietterich, Prof. Thinh Nguyen, Brandon Harvey, Drake Miller, David Jones and Aaron Gray 
read and studied existing articles from various fields of research in computer science.  A list of 
the referenced works is provided in sections 2.1 – 2.5. 
 
 

2.1 DNS related references: 
 

N. Brownlee, KC Clay, and E. Nemeth. Proceedings of the IEEE: DNS Measurements at a 
root server. 2001 Global Telecommunications Conference, 2001. 
 

Barr. RFC 1912: Common DNS Operational and Configuration Errors, 1996. 
 

P. Beertema. RFC 1537: Common DNS Data File Configuration Errors, 1993. 
 

R. Bush. RFC 2181: Clarification to the DNS specification, 1997. 
 

P. Mockapetris. RFC 1034: Domain Names - Concepts and Facilities, 1987. 
 
P. Mokapetris. RFC 1034: Domain Names - Implementation and Specification, 1997. 

 
Pappas, V., Xu, Z., Lu, S., Massey, D., Terzis, A., Zhang, Lixia: Impact of Configuration 

Errors on DNS Robustness. ACM SIGCOMM 2004, Portland, OR. 

2.2 Configuration Modeling and Decision Processing 
references 
 

Heckerman, J. S. Breese, and K. Rommelse. Decision-theoretic troubleshooting. 
Communications of the ACM, 38:49-57, 1995. 

 
B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott. Model-based programming 

of intelligent embedded systems and robotic space explorers. Proceedings of the IEEE: 
Special issue on Modeling and Design of Embedded Software, 91(1):212-237, 2003. 

2.3 Description logic references 
 

McGuinness, J. R. Wright. An industrial strength description logic-based configurator 
platform. IEEE Intelligent Systems, 13(4):69-77, 1998. 
 

Jena, semantic web framework. http://jena.sourceforge.net 
 

Deborah McGuinness, Franz Baader, Diego Calvanese, Daniele Nardi, and Peter Patel-
Schneider. The Description Logic Handbook. Cambridge University Press, 2003. 

 
Shelly Powers. Practical RDF. O'Reilly and Associates, 2003. 



11 
 

 

 
W3C, Deborah L. McGuinnes, and Frank van Harmelen. Owl web ontology language 

overview. http://www.w3.org/TR/owl-features/. 
 

Koller, A. Levy, and A. Pfefer. P-classic: A tractable probabilistic description logic. In 
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-
97),  390-397, 1997. 

 

2.4 Agent architecture references 
 

Martin, E. Plaza, and J. A. Rodriguez. An infrastructure for agent-based systems: an inter-
agent approach. International Journal of Intelligent Systems, 15(3):217-240, 2000. 

 
Martin, E. Plaza, and J. A. Rodriquez-Aguilar. Conversation protocols: Modeling and 

implementing conversation in agent-based systems. In F. Dignum and M. Greaves, 
editors, Issues in Agent Communication, pages 249-263. Springer-Verlag: Heidelberg, 
Germany, 2000. 

 
Applications, technologies, architectures, and protocols for computer communications, 

pages 319-330, New York, NY, USA, 2004. ACM Press. 
 

 

2.5 Logging and monitoring references 
 

IBM. Common base events, http://www06.ibm.com/software/tivoli/features/cei/. 

 

3. Hypothesis Testing  
 

Our primary research focus is to provide an infrastructure that enables more conclusive and 
continued research in the area of Cognitive Networking (COGNET).  This infrastructure includes 
(a) an experimental Domain Name System (DNS) running on our local network, (b) a set of 
diagnostic agents, each agent residing on a different DNS server, and (c) an ontological 
representation of DNS structure used by agents for model-based reasoning. Using this 
infrastructure, our goal is to test the four hypotheses in Section 1.1.  We have shown the first two 
hypotheses to be plausible, and are in excellent position to test the final two hypotheses.  These 
final two hypotheses can be easily tested using the existing groundwork.   We now discuss our 
progress on testing the first two hypotheses. 
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3.1 Hypothesis 1: Model-based reasoning can be extended to 
support monitoring and diagnosis of DNS problems. 

 
To test this hypothesis, our investigation focuses on the delegation errors in DNS.  Pappas 

states that 15% of all DNS problems are due to delegation errors, which makes solving this 
problem particularly useful.  A delegation error occurs when a hostname is either added or 
removed from one of the delegation points in a domain’s hierarchy without making subsequent 
changes in the remainder of the tree. A delegation error can occur from the bottom up and from 
the top down which is referred to as inconsistent/cyclic delegation and lame delegation, 
respectively.  Our initial results indicate that by modeling the DNS environment using an 
ontological representation, these delegation errors can be systematically diagnosed using an 
inference engine.  In particular, we model the DNS environment using a Web Ontology Language 
(OWL), and use the Jena reasoning engine to diagnose the delegation errors.  Jena is a Java 
framework for building semantic web applications. It provides a programmatic environment for 
OWL and a rule-based inference engine.  An ontological representation of a DNS environment 
represents the relationships between different DNS servers and the properties within a DNS 
server.   While Jena’s reasoning engine can diagnose certain DNS errors using an ontology built 
from the information at the local DNS server, it often requires information from other servers for 
diagnosis of delegation errors.  Hence, we have designed a set of diagnostic agents with each 
agent residing on a different DNS server to exchange information for distributed diagnosis.  This 
architecture will be discussed in Section 3.1. 

 
The model-based reasoning process works as follows.  First, the diagnostic agent 

collects the raw data such as the configuration and zone files from its name server and/or its 
parents/children/master/slave in the DNS hierarchy.  Thus, the agent’s communication is 
currently limited to its neighborhood to reduce the bandwidth overhead.  This data collection is 
done periodically or triggered by an event, e.g. a “unreachable host” error or a “restart” event 
recorded in the DNS log file.  Second, the diagnostic agent processes the raw data into an RDF 
model of the DNS server configuration.  RDF is a high-level knowledge representation of data, 
and is designed for easy semantic extraction and reasoning.  Third, the diagnostic agent invokes 
Jena’s inference engine to validate or infer any inconsistencies/errors between the OWL model 
of the DNS error and the RDF model of the DNS server configuration (a snapshot of the current 
configuration).  The current OWL model is manually designed to represent different DNS 
delegation errors.  Jena’s inference engine generates a report elucidating any problems.  Using 
this report, the diagnostic agent determines whether any problem exists. If there is indeed a 
problem, the diagnostic agent consults with the symptom-fault database for the cause and 
remedy of the problem.  Finally, the agent performs the suggested remedy.  Figure 1 
summarizes the model-based diagnosis process. 

 
One of the benefits of this model-based reasoning approach is that errors can be 

described in an abstract human and machine readable form.  In addition, we leverage the 
reasoning engine of Jena to systematically discover errors or combination of errors that might 
be missed by experts due to the complexity of the DNS models.   
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Figure 1 - DNS error diagnosis flow 
 

 
 

3.2 Hypothesis 2: A distributed system of model-based 
reasoning agents can be coordinated to support distributed 
monitoring and diagnosis of DNS problems.   
 

To test this hypothesis, we have designed a set of agents with the capability to gather local 
diagnostic information and to communicate with remote agents for information on remote DNS 
servers.  The inter-agent communication consists of passing well-defined message structures 
using well-established protocols. The information contained in the diagnostic agent’s messages 
consists of high-level models of a server’s configuration such as configuration and zone files, and 
detailed information such as the percentage of failed requests of a particular DNS server during 
the last hour. This information is then filtered for obvious errors. In particular, the configuration 
and zone files are passed through a validation process that alerts the diagnostic agent about 
invalid entries contained in these files. This validation process removes the majority of the human 
contribution to DNS configuration errors. Next, the diagnostic agent uses Jena’s inference engine 
to capture and diagnose the less obvious errors.  Currently, our diagnostic agents can (a) validate 
the configuration and zone files and (b) diagnose and correct simple delegation errors involving 
multiple DNS servers.   Based on our existing infrastructure, we can extend our current models to 
include many more DNS errors and the corresponding algorithms for correcting or mitigating the 
problems.    
 
 We now describe a simple scenario that our diagnostic agents can automatically 
coordinate to diagnose and correct the error.  We first note that while the DNS errors can be 
detected by any DNS server, the majority of errors must be corrected by a master DNS server 
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for the particular zone.  A master DNS server is an authoritative server that distributes the zone 
information to all its slave servers.   The purpose of the slave servers is to reduce the workload 
for the master server.   Therefore, the majority of DNS errors are discovered by the agents 
running on slave servers.  However, the agents on slave servers cannot change the configuration 
and zone files of the master server or of the other slave servers.  Therefore, when an agent on a 
slave server detects a potential problem, it must communicate this problem to the agent on the 
master server.  The agent on the master server then makes necessary changes to its master 
configuration and zone files.  It then broadcasts the new configuration and zone files to all its 
slave servers to correct the problem. 
 

For example, suppose the zone oregonstate.edu has three name servers NS1, NS2, and 
NS3.  NS1 is the master name server, while NS2 and NS3 are slave name servers.   Suppose the 
agent on NS2 detects a configuration error in its zone for eecs.oregonstate.edu and the error is 
“Lame Server found on ghost.eecs.oregonstate.edu”.   There are many possible causes for this 
error, e.g. the removal of the server ghost.eecs.oregonstate.edu.  Upon detecting this error, the 
diagnostic agent on NS2 verifies the name servers assigned for eecs.oregonstate.edu in its own 
configuration and then forwards the error to the agent on the master name server NS1 for 
further diagnosis.  The agent on NS1 is now responsible for correctly diagnosing the lame 
server problem with ghost.eecs.oregonstate.edu and making the proper changes, e.g. removing 
the entry ghost.eecs.oregonstate.edu as a name server. Once the proper changes are made at 
NS1, the master agent then contacts the agents in the slave servers, NS2 and NS3, to notify 
them that the changes have been made.  Upon receiving the notification, the diagnostic agents 
on the slave servers inform their DNS slave servers to perform a zone transfer to update their 
configurations. 
 

In designing the communication between the agents, our aim is to minimize the 
bandwidth and the computational resource overhead.  Therefore, the diagnostic agents employ 
UDP protocol rather TCP.  The UDP protocol reduces the bandwidth overhead as well as the 
computational resource for transferring data between agents.  However, UDP does not provide 
transmission reliability between agents, i.e. it does not provide automatic retransmission of lost 
packets.  To overcome this disadvantage, the sending agent is responsible for retransmission of 
the lost packets based on the response from the receiving agent. Furthermore, the diagnostic 
agent is designed to minimize the number of critical messages that are sent. The 
communications between diagnostic agents typically include information about their name 
servers, configurations, and/or explicit instructions for successful diagnosis and correcting 
problems by another agent.  
 

4. Deliverables 
 

Of the deliverables stated in Section 1.2 the following are complete: DNS Ontology, DNS 
configuration model, DNS structure model, DNS behavior model, DNS symptom database, DNS 
sensor feed, collection of DNS performance, reconfiguration tool, and a set of distributed 
diagnostic algorithms. To summarize, we have either completed or have in place significant 
foundation in all of the deliverables.    
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4.1 DNS ontology: A machine understandable and explicit 
representation of the conceptual layer to facilitate higher-level 
representation of DNS settings.  
 

A method for creating high-level representations of the DNS settings has been created.  We 
are currently modeling the DNS settings through the use of the Resource Description Framework 
(RDF) language.  RDF allows us to use a statement to represent the settings in much the same 
way that humans make statements about their observations of the world.  For instance we can 
make the statement that a particular server does not respond to queries.  This statement has many 
implications, one of which could be that there is an error in the configuration settings such as the 
IP address of the server or the delegation list does not match from one server to the next.  
Statements similar to the one above are the result of the diagnostic agent first performing routine 
data collection on the server.  The diagnostic agent then performs a minimal amount of pre-
processing of the data to extract additional meaning. The high-level data is then used to create an 
ontology model, which either verifies through inference that the server is operating correctly or 
determines that errors exist due to the symptoms that exist in the servers’ model.  

4.2 DNS configuration model: A representation of the space of 
legal and illegal configurations of a DNS server. 
 

Two XML schema documents are used to describe the valid data contained in DNS 
configuration and zone files. The information in the XML schemas describes in detail what form 
the data should take such as the format, range and domain of acceptable values. Through the use 
of a widely accepted technique of XML validation, simple human errors and malformed 
configuration data are detected and reported for later use by the diagnostic agent.  
 

The benefit to using the XML schema documents is three-fold. First, XML schemas are a 
robust and widely used syntax for describing data from virtually any source. Second, XML 
schemas are relatively easy to understand and learn. Finally, the schema documents are platform-
independent and can be extended to describe any type of configuration. 
 

4.3 DNS structural model: Topology of a domain name system in 
terms of interconnected DNS servers and the interactions 
among them.  
 

To conduct experimental research in DNS, we constructed an environment similar to the real 
DNS.   This experimental DNS environment is running on five Linux machines, and it allows us 
to precisely control different parameters, e.g.  DNS request rates and injected error rates.  Our 
design is similar to the design used by Wessels and Klaffy in their work on measuring the upper 
DNS hierarchy. 
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Similar to the real DNS hierarchy, our DNS hierarchy consists of three fundamental 

layers: The root servers, the top level domain (TLD) servers, and second level domain (SLD) 
servers. These are described in more detail as follows: 
 

 Root Servers: The root is denoted by a "." and the root servers are used only to direct 
DNS queries to the proper Top Level Domains. There are 13 root servers, and they are 
labeled alphabetically from a to m. 

 
 Top Level Domain Servers: These servers are sets of servers that categorize the 

Internet into comprehensible units.  Examples of TLDs are “com”, “net”, “org”, “edu”. 
For each top level domain, e.g. “com” or “net”, there can be a maximum of 13 name 
servers. 

 
 Second Level Domain: These name servers are servers maintained by corporations, 

organizations and institutions.  Examples of SLDs are google.com, nero.net, 
oregonstate.edu. For each SLD, there can be 13 name servers that are considered 
authoritative. These domains must be purchased and registered with Internet 
Corporation for Assigned Names and Numbers (ICANN). Another key feature of the 
SLDs is that they can contain sub-domains called delegation points. For instance 
oregonstate.edu has the authority to delegate a sub-domain such as EECS. Once 
delegated, EECS becomes its own authoritative domain underneath oregonstate.edu 
and is referred to as eecs.oregonstate.edu. 
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For our model DNS, we use five computers to simulate the environment shown in 
Figure 2. We divide the different layers of the DNS between computers v1, v2, v3, and v4 for 
simplicity and ease of management. The five computers have the following responsibilities: 
 

 v1: Hosts the root name servers a.root-servers.net through m.root-servers.net. 
 
 v2: Hosts the top level domains. Currently we have com, net, edu, and org   

implemented in the model. 
 
 v3: Hosts the second level domains. Currently we have orst.edu, ucsb.edu, mit.edu, 

nero.net, merit.net, and google.com. 
 
 v4: Hosts the sub-domains (delegated domains from v3). 

 
 v5: Acts as a resolver and metrics server to collect data. 

 

4.4 DNS Behavior Model: Logical representation of how a DNS 
server works and evolves over time according to different 
parameter settings. 
 

DNS and other common network services are controlled via text-based configuration files. In 
the operation of DNS, the configuration files are changed as network requirements change. To 
change a service, an administrator of that particular service uses a text editor or some other tool to 
make changes in the associated configuration file(s). This change will subsequently change the 
operation and overall behavior of the service. DNS service changes only occur when the service 
is restarted, or for zone files when the serial number is updated. 

 
We believe that by capturing the configuration at the time of the change we can model 

the behavior of a name server over time. During operation, that is while the service is running, 
the configuration file can be edited but the configuration will not take effect until the service is 
restarted. Therefore we can view the operation of DNS and other network services as static. 
They are only dynamic when viewed over a period of time. If we capture each configuration 
state at the time the configuration change is made, we will have an accurate behavioral model 
of the DNS and be able to infer configuration errors with the inference engine. 
 
The reconfigurator algorithm is as follows: 
 

1. Receive state change from Log Adapter. 
2. Verify state change. 
3. Read configuration files and convert to XML format. 
4. Notify Agent of new state. 

 
We have not made much progress toward making a behavior model that can be used to predict 
and correct and DNS errors in order to improve the DNS performance.  However, we have built 
the framework for future investigations. 
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4.5 DNS Symptom Database 
 

The DNS symptom database has been created.  The symptom database is used by the 
diagnostic agent to remedy the problems. Please see the Appendix for a complete table. 
 

4.6 Tool for Reconfiguration of DNS Settings 
 

The reconfiguration tool allows us to dynamically change the operations and overall 
behaviors of the DNS system through settings of the DNS environment.   The functions of the 
reconfiguration tools can be divided into two categories.  The first category includes functions 
that are used to set up the DNS environment.  For example, one can use the reconfiguration tool 
to create or delete the name servers in the DNS hierarchy.  One can also use the reconfiguration 
tool to change the property of a name server such as change the query forwarding method of a 
name server from non-recursive to recursive.  These functions typically involve changing the 
configuration and zone files of DNS servers. The second category includes functions that assist 
error creation and statistics collection. These functions aim to measure the performance of the 
diagnostic agents under different injected error rates and types.   For example, to inject a simple 
delegation error, the tool randomly targets a point in the DNS hierarchy of our test environment 
and adds an invalid hostname to its delegation point.  After the tool makes this change to the 
target delegation point, it updates the serial number of that zone file so changes can be tracked.  It 
then restarts the name server, which causes the changes to be made.  The configuration tool also 
keeps track of changes for temporal behavior modeling, and also to permit the diagnostic agent to 
restore the DNS system back to the “last known good” configuration.  
 

4.7 Diagnostic Agent 
 

The distributed diagnostic agent is the core of our solution and envelopes three of the 
deliverables stated earlier in this document.  The deliverables are: 
 

1. A DNS sensor feed that allows the use of feedback provided by multiple endpoints to 
improve diagnostic speed and accuracy.  

 
2. A collection of DNS performance metrics in terms of associated traffic and cache 

statistics. 
 
3. A set of distributed diagnosis algorithms. These algorithms will constitute the 

diagnostic agent’s inner logic. 
 
 

A graphical depiction of the overall diagnostic agent architecture is shown in the 
Appendix. The name server agent architecture is divided into three functional components: 
agent core, reconfigurator, and inference engine.  The agent core collects data from local and 
remote DNS environments to aid the error diagnosis.  The reconfigurator provides the agent the 
ability to capture and make changes to the local configuration. The inference engine uses 
models generated by the reconfigurator and data collected by the agent core to diagnose 
possible errors.  Also, since an agent is running on each DNS server and it records the 
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behaviors of the DNS server, we are able to learn the behavior of a DNS environment over 
time, which in turn allows us to answer questions regarding the configuration and operation. 
 

The main function of the agent core is to provide support for the inference engine. This 
support includes providing the sensor feeds (or probes) and handling of agent-to-agent, agent-
to-name server and name server-to-agent communication. The agent core collects information 
that the inference engine needs to function.  It accepts simple pre-defined instructions from the 
inference engine in order to make the corrective changes to the problems that it discovers. 
 

A secondary function of the agent core is to analyze the name server log files using the 
Log Adapter.  The log adapter is based on the Common Based Event (CBE), part of IBM's 
Common Event Infrastructure. CBE provides a standard that is platform-independent and can 
be extended to work with any type of software, including but not limited to DNS Bind.  The 
CBE standard provides a way to categorize and prioritize events logged at the name server.  
While DNS currently has a category and priority for each event logged, using a standard such 
as CBE allows us to build a robust and extendable agent that is more capable of tackling 
problems outside of DNS.  This reflects our goal of not limiting our agent to the diagnosis of 
DNS based configuration problems, but eventually being able to diagnose other network 
services as well.  The log adapter has two specific tasks. The first is to transform new log 
entries into CBE format and store the entries into a database for archiving.  The second task of 
the log adapter is to filter events based on priority. By setting a high priority, the agent can 
quickly react to log records that require immediate attention. 
 

The purpose of the inference engine is to provide the agent the ability to infer 
configuration errors and to monitor the behavior. Since DNS as well as other network services 
are configuration based systems, we use the Resource Description Framework (RDF) to model 
the configuration and the Ontology Web Language (OWL) to model the errors. Errors are 
inferred using the OWL error model and the RDF model of the configuration.  The inference 
engine receives notification from the agent that there has been a configuration change and new 
data is available from the DNS Reconfigurator. The inference engine then reads in the new data 
and creates a model of the current DNS configuration. The inference engine then takes the error 
model and the newly created configuration model to create an inference model. With the 
inference model, one can ask questions about the properties or values containing in the model.  
These questions can be general questions such as is there any error in the configuration model? 
Or, they can be specific questions such as whether a particular error exists. The agent can 
initiate these questions at a regular interval, at startup, or whenever an error is suspected to be 
occurring.   
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5. Conclusions 
 

During the course of this seedling study we have made good progress in laying a sound 
foundation for future research in the field of Cognitive Networking. Through this study we have 
only begun to realize the potential model-based diagnosis for increasing the reliability and 
efficiency of a large distributed networked system like DNS.  
 

We have built a DNS structure similar to that used in real-world environments.  We 
have created and deployed diagnostic agents capable of monitoring and collecting applicable 
data.  Finally, we have created a distributed framework for model-based diagnosis, which 
allows us to diagnose errors in a high-level and scalable manner.  

 
While our research focus has been on diagnosing and correcting DNS delegation errors, 

we believe an extended diagnosis system based on our framework will be able to correct other 
DNS errors as well. Furthermore, it is very plausible that one can design a feature-rich software 
suite based on our model-based reasoning framework that can diagnose and correct errors in 
other distributed network services. 
 

6. Reference Information 
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6.2 Symptom – Fault Table 
 

Table 1: Fault Table 
Symptom ID Symptom Description Fault ID Fault Description
s1 Loss of Network Connectivity f1 Forgot to Increment Serial Number
s2 Response from Unexpected Source f2 Forgot to Reload Primary Master Server after changes are made
s3 Recursion Bugs f3 Corrupt db.cache data
s4 Client unsure on handleing of NS record in Authority Section f4 Ignored Referral
s5 No answer to query f5 To Many Referals
s6 Client calls on server to many times f6 Malicious Server
s7 Nave Server is infected with bogus cache data f7 Zero Answer
s8 A server refers to itself in the authority section f8 Added Name to Database File, but Forgot to Add PTR Record
s9 Cache Leaks f9 Incorrect db.cache file
s10 Remote Names Can't Be Looked Up f10 db.cache size set to small
s11 Name Error Bugs f11 Server does not do negative caching
s12 Lookups Take a Long Time f12 Syntax error in zone data file on master
s13 Wrong or Inconsistent Answer f13 Incorrect IP address for master on Slave zone data file
s14 Slave name server data does note change when change is made f14 Syntax error in configuration file or zone data file
s15 Name Server Keeps Loading Old Data f15 Missing Dot at the End of a Domain Name in a Zone Data file
s16 Is invalid proceeding anyway f16 Missing root.hints or db.root data
s17 Slave Server Can't Load Zone Data f17 Missing Subdomain Delegation
s18 Internet services refused f18 TTL exeeded
s19 Host fails authentication checks f19 Syntax error in resolv.conf
s20 Inconsistant or Missing Bad Data f20 Incorrect labels in DNS name
s21 Lame-server reported f21 Incorrect SOA format
s22 Name Server fails to load f22 Incorrect Glue records
s23 Name server reports “Too Many Open Files” f23 Retry Interval is to low

f24 Incorrect address in query list – allow-query { address_match_list }
f25 Incorrect configuration named.conf listen-on { ip_address }
f26 PTR record points to CNAME 
f27 Expire time exceeded
f28 Loss of Network Connectivity
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Phase 2-Part 2: 
 Learning Generalized Task Knowledge from 

Demonstration and Question Answering 

1. Introduction 
 

Most humans have experienced the difficulties that can arise when using paper-based 
instructions to complete an assembly task. Most of these difficulties could be avoided if 
only the instructions “truly understood” the assembly task, could monitor the user, and 
proactively engage the user.  The high-level application goal of this project is to study the 
use of machine learning techniques for developing such intelligent, proactive instructions.  
 

We imagine a scenario where technicians in the field carry wearable “instruction 
goggles”, rather than paper instruction manuals.  The goggles would contain information 
about thousands of possible tasks and when worn could guide the user through a 
particular task via an augmented reality display. For assembly tasks, the augmented 
reality interface might highlight the next part to be attached to the current sub-assembly 
along with its destination and tools required. In addition, the interface could proactively 
monitor the progress of the user and interrupt the user if a mistake is about to be made.  
 

It is already possible to develop such systems for small, relatively simple tasks in 
closed worlds. However, this comes at a significant and painstaking development cost. 
Scaling up to thousands of assembly tasks and less constrained environments would 
require an enormous and impractical development effort. An alternative is to develop 
machine-learning methods that can acquire the necessary task knowledge automatically 
by observing demonstrations of each task.   
 

Existing machine learning techniques are typically based on searching for 
statistically justified patterns in data. For complex learning tasks, such as our assembly 
example, these techniques would require thousands of training demonstrations, making 
them impractical. Thus, new, less data hungry, learning algorithms are needed for such 
tasks. One approach toward this goal is to develop algorithms that can leverage a variety 
of knowledge sources about the learning domain in order to decrease the training data 
requirements. For example, useful knowledge sources for learning assembly knowledge 
might include physics-based and geometric reasoning engines, configuration-space 
planners, among many others. Learning in the presence of such knowledge sources is a 
relatively untouched area of machine learning, but is perhaps one of the most important 
directions toward building truly integrated intelligent systems that can learn.   
 

Below we outline an initial investigation where we develop and partially 
implemented an architecture for learning furniture assembly tasks from single 
demonstrations. At an application level, our work highlights some of the main challenges 
that are left in developing such a system. At a scientific level, our work provides a 
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concrete example of a learning domain where rich knowledge sources are necessary and 
highlights some of general machine learning issues.  
 

The remainder of this report proceeds as follows. First, we introduce the assembly 
domain used in our pilot study.  Next we give a high-level overview of our learning 
system’s architecture. This will be followed by a more detailed treatment of each system 
component. Next, we summarize our results from a user study that suggest the utility of 
having an assembly-task assistant. Finally, we conclude with a summary of the issues 
raised by our study.  

2. Pilot Study Domain 
We chose to study furniture assembly as a domain for learning task knowledge from 

demonstrations. For this purpose, we selected “Z-Line Designers 2 Drawer Deluxe 
Cherry Vertical File” shown in Figure 4 as our test piece of furniture. 
 

 
Figure 4. - The Z-Line 2 Drawer Deluxe Cherry Vertical File 

 
The assembly instructions for the Z-Line file can be divided into three parts as 

depicted in Figure 5a-c. First, the main frame of the file must be constructed. Next, two 
nearly identical drawers must be constructed. Finally, the drawers are inserted into the 
file.  While this is a relatively simple piece of furniture to assemble, there are many 
opportunities to make mistakes that lead to dead-ends. For example, if one attaches the 
four sides of a drawer together before inserting the drawer bottom, it becomes impossible 
to insert the bottom. Surprisingly, as our user studies show, such seemingly obvious 
errors are common in practice.  
 

It is interesting to note that although the instruction manual specifies a single 
sequence of assembly steps, there are many other possible assembly sequences that work 
equally well.  

 
A human will recognize such generalized task knowledge after observing just a 

single assembly sequence. We would also like this to be the case for our learner, as an 
intelligent assembly tutor should not interrupt the user if they depart from the paper 
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instructions, but are otherwise correct. Clearly no system based on pure statistics will be 
able to robustly infer alternative assembly sequences from a single demonstration. Such 
alternatives can only be inferred by reasoning about the observed sequence using rich 
knowledge sources.  
 
 

 
(a)                                  (b)                                                    (c) 

Figure 5. - (a) Depiction of assembly of main frame.  (b) Depiction of assembly of drawer. 
(c) Final step of placing drawer in main frame. 

 
The primary objective of our system is to observe a demonstration of the Z-Line 

assembly, using motion-capture technology as a “vision system”, and from that learn a 
generalized plan for assembling the file. Ideally we would like the generalized plan to 
encode all legal assembly sequences, rather than just the one observed. In addition, we 
would like the generalized plan to encode a notion of difficulty, so that it can determine 
whether one assembly sequence is physically easier than another. The ability to judge the 
difficulty of an assembly sequence, in addition to the correctness, is important for the 
system to offer the best possible guidance to a user. 

3. System Overview 
Figure 6 shows the high-level end-to-end architecture of our proposed learning 

system. These components are described in further detail in the next section.  
 
3.1 Motion Capture.  

The front end of our system is a motion capture system that observes a human 
performing an assembly and produces a movie of orientations and positions of each part 
involved in the assembly.  
 
3.2 Annotation. 

The raw motion capture data is then annotated by a human with information about 
the observed subtasks and structural relationships in key frames. Eventually the goal is 
for this annotation to be acquired via a mix of automated analysis (perhaps the result of 
learning) and speech-recognition technology. Automating this process was beyond the 
scope of our study.   
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3.3 Learning Component.   

The learning component takes as input the annotated motion capture data along with 
three knowledge sources. First, there is an interface to a physics simulator that allows for 
physical queries to be answered via simulation—e.g. “Is the current assembly stable?”. 
Second, there is an interface to a C-space planner that allows for queries to be answered 
about the feasibility of physical actions subject to topological constraints—e.g. “Is there 
any way to insert part A into slot B?”. Third, the learner is provided with geometric 
models of all the parts involved in the assembly. An eventual goal is for these part 
models to be acquired, or refined, via automated learning techniques. However, this again 
was beyond the scope of this study.  
 

The learner analyzes the annotated motion capture data and via a series of queries to 
the physical simulator and C-space planner outputs a generalized task model for 
assembling the Z-line. This task model encodes all of the hypothesized legal assembly 
sequences along with a measure of the difficulty of each assembly step.  
 

 
Figure 6. - System architecture of the assembly task learner. 
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It is important to note that the notion of learning here is much different than the usual 
one in machine learning. Here we view learning as the process of actively engaging a set 
of knowledge sources in order to construct a consistent and well-justified hypothesis from 
observed data. This view is depicted in Figure 7 where the learner is shown to have a two 
way interface to each knowledge source, allowing it to pose queries and receive 
responses.  

 

 
Figure 7. - Depiction of knowledge sources used by learner. 

4. System Details 
Below we provide more details about the various components and functions 

performed by our system.  

4.1 Motion Capture  
Our assembly demonstrations of the Z-line file were conducted in the Oregon State 

University motion-capture (mocap) facility. A mocap system can be viewed as a 
simplified computer vision system for tracking objects. The primary simplification is the 
use of markers on each object to be tracked, which removes most of the difficulties 
involved with tracking from raw video.  
 

On each part of the Z-line file, we placed three markers A, B, C and chose a position 
on the part (e.g., one of the corners) to be the origin of the local coordinate system of the 
part.  We measured the displacement of marker A from that origin and recorded that 
information for each part. Note that we did not attempt to track part connectors (e.g. 
dowels and screws) or tools in our experiments.  
 

In the motion capture system, the markers all look the same.  Whenever a new 
marker became visible, we manually told the mocap system the id number of that marker.  
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The mocap system then was able to track that marker until it was occluded by some other 
part (or by the person, etc.).  After completing the mocap for an assembly sequence, an 
interactive interface was used to clean-up any tracking errors made by the system. It took 
us approximately 4 hours to manually clean 2 minutes of video. After cleaning, we were 
left with a movie that gives the 3D (x,y,z) locations of each marker at each time step.  
This data is then processed to compute the 6 degrees-of-freedom pose of each object in 
the global coordinate system. Figure 8a and b show a number of the Z-line parts laid out 
in the mocap room along with an image showing the calculated 3D coordinates of the 
three markers for each part (shown as triangles).   
 

 
(a) (b) 

Figure 8. - (a) Cabinet parts laid out at the start of a motion capture session. (b) A 
depiction of the data recorded by the motion capture system. Each part has three 

markers, which are shown as the vertices of the triangles in the figure.  
 
After arriving at the final position/orientation movie, we annotated key frames with 
semantic information about the task and structural relations among parts. In particular, we 
annotated each frame where a step was completed (e.g. attaching one piece to another) as 
the “final configuration” of that step. The annotation included information about all of the 
structural relations among parts. In addition, if the step completed a subgoal (e.g. 
completing a drawer assembly), we annotate that subgoal. Figure 9a shows an example 
annotation for one of the key frames.  
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(a) (b) 

Figure 9. - (a) The symbolic annotation of a key frame of the motion capture. (b) 
Depiction of internal model of key motion capture frame. The internal representation is 

based on the provided part model, rather than the raw motion capture data.  
 

For any key frame, given the structural annotations, the 3D marker coordinates, and 
the geometric part models, it is relatively straightforward to use a constrained 
optimization procedure to create an internal model of the location of each part. This 
model needs to obey the constraints imposed by the structural annotations and try to 
match the position data provided by the mocap system as closely as possible. 
Unfortunately, the timeframe of the project did not allow us to implement this 
optimization procedure, and we simply provided the internal models by hand for the key 
frames. Figureb shows a depiction of the internal part model for one of our key frames.  

4.2 Generating Feasible All-Policies Graph 
A critical question is what representation to use for the learned generalized task 

knowledge. The representation needs to compactly encode sets of possible assembly 
sequences, of which there can be exponentially many. We considered a number of 
representations, including the commonly studied partially-ordered plans and hierarchical 
task networks. However, these representations did not appear compact enough for our 
purposes. In particular, physical assembly tasks such as the Z-line file, place weak 
constraints on many of the action orderings. For example, when assembling a drawer, the 
order in which the sides are joined together is not important, and our representation needs 
the ability to compactly encode such information.  
 

We finally settled on a representation which we call an all-policies graph. The nodes 
of an all-policy graph correspond to partial assemblies, and the edges correspond to 
single assembly steps. In our study we created multiple all-policy graphs, one for each 
sub-assembly of the Z-line file, which includes the two drawers and the frame. The 
intention is that for each sub-assembly, any path through the all-policy graph should 
correspond to a legal assembly sequence.  
 

Our learner infers an all-policies graph using a two step process. First, given the 
structural annotation of the final mocap frame of a particular sub-assembly, we create a 

High-Level Structural Representation: 
    
 
rigid(DrawerLeftSide, DrawerBack) 
rigid(DrawerRightSide, DrawerBack) 
rigid(DrawerFront, DrawerLeftSide) 
rigid(DrawerFront, DrawerRightSide) 
trapped(DrawerBottom, DrawerLeftSide) 
trapped(DrawerBottom, DrawerBack) 
trapped(DrawerBottom, DrawerRightSide) 
trapped(DrawerBottom, DrawerFront) 
 

Position and Orientation Data: 
(from marker data) 
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complete state-space graph by backtracking from the final state.  Figure 10 shows the 
complete state space graph for a drawer sub-assembly. Each arc through this graph 
corresponds to either attaching drawer sides to one another or inserting the drawer bottom 
into various grooves on the drawer sides.  

 
 

Figure 10. - The complete state-space graph for the drawer assembly. Here the dark 
edges correspond to the sides of the drawer and the blue area corresponds to the 

bottom of the drawer. Arrows correspond to the addition of one part to the assembly. 
Note that some arrows do not correspond to physically possible actions. One of the 

learner’s objectives is to rule out such arcs. 
 

It turns out that some of these arcs in the state-space graph are not physically 
possible due to topological constraints. For example, as depicted in Figure 11, it is 
impossible to insert the bottom of the drawer after all four sides of the drawer have been 
attached. The second step of generating an all-policies graph is to use the C-space planner 
to determine which arcs are realizable and to prune arcs that are not. We used a monte-
carlo-based C-space planner for this purpose. In order to determine whether an arc from 
state A to state B is possible, we used the planner to determine if there was a 
topologically valid trajectory for moving the new part into state B. For example, for the 
lower arc in Figure 11, the C-space planner was set up to find a trajectory for the drawer 
bottom that placed it in its final location. The planner was unable to find such a plan, so 
the learner accordingly pruned the arc. After backtracing through the entire state-space 
graph (pruning when possible) and testing each arc, we end up with a subset of the 
original arcs that are all topologically possible. The resulting subgraph is taken to be the 
final all-policies graph Figure 12 shows the all-policies graph for the drawer assemblies 
(same for both drawers) and for the frame. Also shown is the path taken through the 
graph in the demonstrated assembly. Clearly the all policies graph has generalized well 
beyond that single example.  
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Figure 11. - The lower plan step is infeasible due to the fact that the bottom panel cannot 
be inserted when all four sides of the drawer are attached. The C-Space planner can be 

used to determine that the planning step is physically impossible. The top arc 
corresponds to a physically realizable action. Accordingly the C-Space planner 

determines that this is the case by computing a plan for attaching the fourth side onto 
the drawer. 

 

 
Figure 12. - The final all-policies graph after pruning according topological constraints. 

The left-bottom plan shows the graph for assembling the drawers. The right-bottom plan 
shows the graph for assembling the cabinet frame. The green-bold arcs show the 

observed path from the demonstration.  
 

4.3 Assessing Difficulty of Plan Steps 
The above all-policies graph only indicates whether an assembly step is topologically 

possible or not. It does not encode information about the difficulty of each step. In order 
to compute such information, the system utilizes the physics simulator. Intuitively we 
measure the difficulty of an assembly step by roughly how many “hands” are required to 
perform the step. As a proxy for this measurement, we use the physics simulator to 
determine the minimum number of parts that must be “frozen in space” in order to make 
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the assembly state resulting from the step stable. This is done by an exhaustive search, 
where each step of the search freezes some number of the parts and then lets gravity take 
effect. If any unfrozen part falls due to gravity, then we say that the state was unstable 
given the current set of frozen parts. We used the Novodex physics simulator in our 
experiments. Figure 13 shows the all-policies graph with each arc labeled by a weight 
corresponding to the “number of hands” measure of difficulty.  
 

 
Figure 13. - Weighted all-policies graph for the drawer assembly. The arc weights 

indicate the difficulty of the planning step and are based on simulating the stability of 
the partial assemblies. 

5. Results of User Study 
In order to assess the potential utility of an automated assembly instructor, we 

conducted a user study with the goal of understanding the typical error modes of humans 
when performing assembly tasks.  
 

We selected five subjects from the Oregon State University, Computer Science 
Department and asked them to assemble the Z-line file. The parts were laid out on the 
table, the cam locks and guide rails were fixed in the appropriate parts, and user was 
given the Z-line instruction manual. We video taped the assemblies and later analyzed the 
performance of each participant.  
 

In our analysis we counted two types of errors: 1) detachment errors, occurring when 
a part is attached and then detached, and 2) deselect errors, occurring when a part was 
picked up with the intention of attaching it, but then not attached. Deselect errors provide 
a measure of how useful a human might find a system that highlights the next part to add 
to the assembly. Detachment errors are quite time consuming and measure the utility of a 
system that can monitor the user and proactively interrupt them before they make the 
error. We also separately recorded the total time for assembly and the time spent 
searching for parts (including reading the manual). Error! Reference source not found 
summarizes the data we collected.  
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We were most surprised by the fact that the subjects made more errors than we had 

expected. Three out of the five reached the dead-end state of fixing all four sides of the 
drawer before inserting the bottom panel (i.e. the arc ruled out in Figure 11), and were 
forced to backtrack. An automated instructor, using our all-policies graph could have 
prevented these errors. Another interesting observation is that over 40% of the users’ time 
was spent searching for parts and reading the instruction manual. Determining the proper 
orientation of parts also consumed a significant amount of the subjects’ time. Overall, 
these results indicate that providing the user with an automated instructor in the form of 
augmented reality goggles could have a significant impact on assembly performance. The 
augmented reality display would help the user avoid searching for parts, could show the 
user the next assembly step, and could demonstrate the proper orientation of each part. 
The user could also be warned when they are about to take a dead-end action. 
 

Table 2: Summary of user study results. 
 

    Number of Errors    Time (mts:secs) 

  Detaches Deselects Total Search 

Average 4.6(31%) 3.8(25%) 19:49 8:20(43.2%) 

S.D. 3.8 2.4 6:03 2:32(6.41%) 

 

6. Summary and Conclusions 
 

Our pilot project has developed an architecture for the problem of learning 
generalized task knowledge from single assembly demonstrations. While there are a 
number of components of the architecture that need to be fully implemented (particularly 
the perceptual system), we believe that the challenges are just on the fringe of existing 
technology. Our small user study suggests there is significant utility in having automated 
assembly instructors. Developing a learning system to acquire the necessary knowledge is 
perhaps the only practical way to develop a large library of assembly tasks for such 
systems.  
 

From a machine-learning perspective, our system architecture suggests a view of 
machine learning that is far from the norm. In particular, learning is a process of 
interacting with rich knowledge sources and data, in order to arrive at a reliable 
hypothesis. This suggests a move away from data hungry methods to methods that 
actively consult knowledge sources as a proxy for hard-to-gather training data. The 
system described in this report represents only a hardwired instantiation of what we 
envision such a learning system should look like. In particular, the interaction between 
the learner and knowledge sources was hardwired and inflexible. Rather, the ultimate 



33 
 

 

goal should be to develop “representations” of knowledge sources and data, which a 
learner can then reason about in order to decide on how to best interact with the sources 
in order to achieve the learning objective. Ultimately, we believe that such approaches 
are necessary if we are to achieve truly integrated intelligent systems with learning 
capabilities. 



   

 

Appendix A: Fault-Table Diagnosis for DNS 
In fault-table diagnosis, we must define a set of symptoms and a set of faults.  The 

fault table then lists the symptoms of each fault.  Diagnostic algorithms can use the fault 
table to drive efficient diagnosis, particularly if the probability of each fault is known and 
if the cost of measuring each symptom is known. 

 
The following table lists the symptoms and faults that we were able to identify for a 

single DNS installation. 
 

Symptom 
ID Symptom Description  Fault ID  Fault Description 

s1 Loss of Network Connectivity f1 Forgot to Increment Serial Number 

s2 Response from Unexpected Source f2 Forgot to Reload Primary Master Server after 
changes are made  

s3 Recursion Bugs f3 Corrupt db.cache data 

s4 Client unsure on handling of NS record in 
Authority Section f4 Ignored Referral  

s5 No answer to query f5 To Many Referrals  
s6 Client calls on server to many times f6 Malicious Server  
s7 Nave Server is infected with bogus cache data f7 Zero Answer  

s8 A server refers to itself in the authority section f8 Added Name to Database File but Forgot to Add 
PTR Record  

s9 Cache Leaks f9 Incorrect db.cache file  
s10 Remote Names Can't Be Looked Up f10 db.cache size set to small  
s11 Name Error Bugs f11 Server does not do negative caching  
s12 Lookups Take a Long Time f12 Syntax error in zone data file on master  

s13 Wrong or Inconsistent Answer f13 Incorrect IP address for master on Slave zone 
data file  

s14 Slave name server data does note change 
when change is made f14 Syntax error in configuration file or zone data file 

s15 Name Server Keeps Loading Old Data f15 Missing Dot at the End of a Domain Name in a 
Zone Data file  

s16 Is invalid proceeding anyway f16 Missing root.hints or db.root data  
s17 Slave Server Can't Load Zone Data f17 Missing Subdomain Delegation  
s18 Internet services refused f18  TTL exceeded  
s19  Host fails authentication checks f19 Syntax error in resolv.conf  
s20 Inconsistent or Missing Bad Data f20 Incorrect labels in DNS name  
s21 Lame-server reported f21 Incorrect SOA format  
s22 Name Server fails to load f22 Incorrect Glue records  
s23 Name server reports  Too Many Open Files   f23 Retry Interval is to low  

  f24 Incorrect address in query list  allow-query 
{address_match_list }  

  f25 Incorrect configuration named.conf listen-on 
{ip_address }  

  f26 PTR record points to CNAME  
  f27 Expire time exceeded  
  f28 Loss of Network Connectivity 
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The following table is the fault-symptom table.  A “1” in a cell indicates that the fault  
Faults 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28

s1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

s3 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 

s6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

s7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

s8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s9 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 

s11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

s12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 

s13 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 

s14 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s15 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s17 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

s18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

s19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

s20 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 

s21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

s22 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S
ym

pt
om

s 

s23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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Abstract 

 
The field of machine learning has made major strides over the last 20 years. This 
document summarizes the major problem formulations that the discipline has studied, 
then reviews three tasks in cognitive networking and briefly discusses how aspects of 
those tasks fit these formulations. After this, it discusses challenges for machine learning  
research raised by Knowledge Plane applications and closes with  proposals for the 
evaluation of learning systems developed for  these problems.    
 

B1. Background and Motivation 
 

Recently, Clark (2002) and Partridge (2003) have proposed a new vision for 
computer network management—the Knowledge Plane—that would augment the current 
paradigm of low-level data collection and decision making with higher-level processes. 
One key idea is that the Knowledge Plane would learn about its own behavior over time, 
making it better able to analyze problems, tune its operation, and generally increase its 
reliability and robustness. This suggests the incorporation of concepts and methods from 
machine learning (Langley, 1995; Mitchell, 1997), an established field that is concerned 
with such issues. 

Machine learning aims to understand computational mechanisms by which 
experience can lead to improved performance. In everyday language, we say that a 
person has `learned' something from an experience when he can do something he could 
not, or could not do as well, before that experience. The field of machine learning 
attempts to characterize how such changes can occur by designing, implementing, 
running, and analyzing algorithms that can be run on computers. The discipline draws on 
ideas from many other fields, including statistics, cognitive psychology, information  
theory, logic, complexity theory, and operations research, but always with the goal of 
understanding the computational character of learning.   
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There is general agreement that representational issues are central to learning.  In 
fact, the field is often divided into paradigms that are organized around representational 
formalisms, such as decision trees, logical rules, neural networks, case libraries, and 
probabilistic notations.  Early debate revolved around which formalism provided the best 
support for machine learning, but the advent of experimental comparisons around 1990 
showed that, in general, no formalism led to better learning than any other.  However, it 
also revealed that the specific features or representational encodings mattered greatly, and 
careful feature engineering remains a hallmark of successful applications of machine 
learning technology (Langley & Simon, 1995). 

Another common view is that learning always occurs in the context of some 
performance task, and that a learning method should always be coupled with a 
performance element that uses the knowledge acquired or revised during learning.  
Figure~14 depicts such a combined system, which experiences the environment, uses 
learning to transform those experiences into knowledge, and makes that knowledge 
available to a performance module that operates in the environment.  Performance refers 
to the behavior of the system when learning is disabled.  This may involve a simple 
activity, such as assigning a label or selecting an action, but it may also involve complex 
reasoning, planning, or interpretation.  The general goal of learning is to improve 
performance on whatever task the combined system is designed to carry out.  
 

 
Figure 14 - . Relationship between learning, performance, knowledge, and the 

environment. 
 

We should clarify a few more points about the relations between learning, 
performance, and knowledge. The figure suggests that the system operates in a 
continuing loop, with performance generating experiences that produce learning, which 
in turn leads to changes in performance, and so on. This paradigm is known as on-line 
learning, and characterizes some but not all research in the area.  A more common 
approach, known as off-line learning, instead assumes that the training experiences are all 
available at the outset, and that learning transforms these into knowledge only once. The 
figure also includes an optional link that lets the system's current knowledge influence the 
learning process. This idea is not widely used in current research, but it can assist 
learning significantly when relevant knowledge is available.  

In this paper, we examine various aspects of machine learning that touch on 
cognitive approaches to networking. We begin by reviewing the major problem 
formulations that have been studied in machine learning.  Then we consider three tasks 
that the Knowledge Plane is designed to support and the roles that learning could play in 
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them.  Next we discuss some open issues and research challenges that the Knowledge 
Plane poses for the field of machine learning. Finally, we propose some methods and 
criteria for evaluating the contribution of machine learning to cognitive networking tasks. 
 

B2. Problem Formulations in Machine Learning 
Treatments of machine learning (e.g., Langley, 1995; Mitchell, 1997) typically 

organize the field along representational lines, depending on whether one encodes learned 
knowledge using decision trees, neural networks, case libraries, probabilistic summaries, 
or some other notation. However, a more basic issue concerns how one formulates the 
learning task in terms of the inputs that drive learning and the manner in which the 
learned knowledge is utilized. This section examines three broad formulations of machine 
learning.  

B2.1 Learning for Classification and Regression 
The most common formulation focuses on learning knowledge for the performance 

task of classification or regression. Classification involves assigning a test case to one of 
a finite set of classes, whereas regression instead predicts the case's value on some 
continuous variable or attribute.  In the context of network diagnosis, one classification 
problem is deciding whether a connection failure is due to the target site being down, the 
target site being overloaded, or the ISP service being down. An analogous regression 
problem might involve predicting the time it will take for the connection to return. Cases 
are typically described as a set of values for discrete or continuous attributes or variables.  
For example, a description of the network's state might include attributes for packet loss, 
transfer time, and connectivity. Some work on classification and regression instead 
operates over relational descriptors. Thus, one might describe a particular situation in 
terms of node connections and whether numeric attributes at one node are higher than 
those at an adjacent node.  

In some situations, there is no special attribute that one knows at the outset will be 
predicted from others. Instead, one may need to predict the value of any unobserved 
attributes in terms of others that have been observed. This performance task, often called 
pattern completion or flexible prediction, can be used for symbolic attributes, continuous 
attributes, or a mixture of them. For example, given information about some network 
variables that are measured easily and cheaply, one might want to predict the values of 
other network variables that are more expensive to measure. A related task involves 
predicting the conditional probabilities that different values will occur for unknown 
variables given observed values for others. Alternatively, one may want to predict the 
joint probability distribution over the entire space of possible instances. 

One can formulate a number of distinct learning tasks that produce knowledge for 
use in classification or regression. The most common, known as supervised learning, 
assumes the learner is given training cases with associated classes or values for the 
attribute to be predicted. For example, one might provide a supervised learning method 
with 200 instances of four different types of connection failure, say 50 instances of each 
class, with each instance described in terms of the attributes to be used later during 
classification.  The analogous version for regression would provide instead the time taken 
to restore the connection for each training instance. 
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There exist a variety of well-established paradigms for supervised learning, including 
decision-tree and rule induction (Quinlan, 1993; Clark & Niblett, 1988), neural network 
methods (Rumelhart et al., 1986), nearest neighbor approaches (Aha et al., 1991), and 
probabilistic methods (Buntine, 1996). These frameworks differ in the formalisms they 
employ for representing learned knowledge, as well as their specific algorithms for using 
and learning that knowledge.  What these methods hold in common is their reliance on a 
target class or response variable to direct their search through the space of predictive 
models. They also share a common approach to evaluation, since their goal is to induce 
predictive models from training cases that have low error on novel test cases. 

A second broad class of tasks, unsupervised learning, assumes that the learner is 
given training cases without any associated class information or any specific attribute 
singled out for prediction. For example, one might provide an unsupervised method with 
the same 200 instances as before, but not include any information about the type of 
connection failure or the time taken to restore the connection. 

As with supervised learning, there exist many techniques for learning from 
unsupervised data, but these fall into two broad classes. One approach, known as 
clustering (Fisher, 1987; Cheeseman et al., 1988), assumes the goal of learning is to 
assign the training instances to distinct classes of its own invention, which can be used to 
classify novel instances and make inferences about them, say through pattern completion. 
For example, a clustering algorithm might group the 200 training instances into a number 
of classes that represent what it thinks are different types of service interruption.  Another 
approach, known as density estimation (Priebe & Marchette, 1993), instead aims to build 
a model that predicts the probability of occurrence for specific instances. For example, 
given the same data about service interruptions, such a method would generate a 
probability density function that covers both the training instances and novel ones. 

A third formulation, known as semi-supervised learning (Blum & Mitchell, 1998), 
falls between the two approaches we have already discussed. In this framework, some of 
the training instances come with associated classes or values for predicted attributes, but 
others (typically the majority) do not have this information. This approach is common in 
domains such as text classification, where training cases are plentiful but class labels are 
costly. The goal is similar to that for supervised learning, that is, to induce a classifier or 
regressor that makes accurate predictions, but also to utilize the unlabeled instances to 
improve this behavior.  For example, even if only 20 of the 200 training instances on 
service interruption included class information, one might still use regularities in the 
remaining instances to induce more accurate classifiers. 

Classification and regression are the most basic capabilities for which learning can 
occur. As a result, the field has developed robust methods for these tasks and they have 
been applied widely to develop accurate and useful predictive models from data. Langley 
and Simon (1995) review some early successes of these methods, and they have since 
formed the backbone for many commercial applications within the data-mining 
movement.  Methods for classification and regression learning can also play a role in 
more complex tasks, but such tasks also introduce other factors that require additional 
mechanisms, as discussed in the next section. 
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B2.2 Learning for Acting and Planning 
A second formulation addresses learning of knowledge for selecting actions or plans 

for an agent to carry out in the world. In its simplest form, action selection can occur in a 
purely reactive way, ignoring any information about past actions. This version has a 
straightforward mapping onto classification, with alternative actions corresponding to 
distinct classes from which the agent can choose based on descriptions of the world state. 
One can also map it onto regression, with one predicting the overall value or utility of 
each action in a given world state. 

Both approaches can also be utilized for problem solving, planning, and scheduling. 
These involve making cognitive choices about future actions, rather than about 
immediate actions in the environment.  These activities typically involve search through a 
space of alternatives, which knowledge can be used to constrain or direct.  This 
knowledge may take the form of classifiers for which action to select or regression 
functions over actions or states. However, it can also be cast as larger-scale structures 
called macro-operators that specify multiple actions that should be carried out together. 

As with classification and regression, one can formulate a number of learning tasks 
that produce knowledge for action selection and search. The simplest approach, known as 
a learning apprentice (Mitchell et al., 1985) or an adaptive interface (Langley, 1999), 
embeds the learner within a larger system that interacts with a human user. This system 
may accept directions from the user about what choices to make or it may make 
recommendations to the user, who can then accept them or propose other responses. 
Thus, the user gives direct feedback to the system about each choice, effectively 
transforming the problem of learning to select actions into a supervised learning task, 
which can then be handled using any of the methods discussed earlier. A related 
paradigm, known as programming by demonstration (Cypher, 1993), focuses on learning 
macro-operators for later invocation by the user to let him accomplish things in fewer 
steps. 

For example, one might implement an interactive tool for network configuration that 
proposes, one step at a time, a few alternative components to incorporate or connections 
among them. The human user could select from among these recommendations or reject 
them all and select another option. Each such interaction would generate a training 
instance for use in learning how to configure a network, which would then be used on 
future interactions. One can imagine similar adaptive interfaces for network diagnosis 
and repair.  

A closely related formulation of action learning, known as behavioral cloning 
(Sammut et al., 1992), collects traces of a human acting in some domain, but does not 
offer advice or interact directly. Again, each choice the human makes is transformed into 
a training case for use by supervised learning. The main difference is that behavioral 
cloning aims to create autonomous agents for carrying out a sequential decision-making 
task, whereas learning apprentices and adaptive interfaces aim to produce intelligent 
assistants. For example, one could watch a human expert execute a sequence of 
commands in configuring a computer network, transform these into supervised training 
cases for learning which actions to select or estimating the value of available choices. 
However, one might also attempt to extract, from the same trace, recurring sets of actions 
for composition into macro-operators that would let one solve the same problem in fewer 
steps. 
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A somewhat different formulation involves the notion of learning from delayed 
reward, more commonly known as reinforcement learning.  Here the agent typically 
carries out action to take in the environment and receives some reward signal that 
indicates the desirability of the resulting states. However, because many steps may be 
necessary before the agent reaches a desirable state (e.g., reestablishing a service 
connection), the reward can be delayed. Research in the reinforcement learning 
framework falls into two main paradigms. One casts control policies in terms of functions 
that map state descriptions and available actions onto expected values (Kaelbling et al., 
1996; Sutton & Barto, 1998). This approach involves propagating rewards backward over 
action sequences to assign credit, and may invoke a regression method to learn a 
predictor for expected values. Another paradigm instead encodes control policies as a 
more direct mapping from state descriptions onto actions, with learning involving search 
through the space of such policies (Williams, 1992, Moriarty et al., 1999).  

For instance, one might apply either approach to learning policies for dynamic 
network routing (Boyan & Littman, 1994). The reward signal here might be based on the 
standard metrics for route performance.  The system would try establishing different 
routes, each of which involves a number of decision-making steps, and learn routing 
policies based on the observed performance. Over time, the routes selected by the learned 
policy would change, giving improved behavior for the overall network.  

Another formulation is closely related to reinforcement learning, but involves 
learning from problem solving and mental search (Sleeman et al., 1982), rather than from 
actions in the environment. Here the agent has some model of the effects of actions or the 
resources they require which it can use to carry out mental simulations of action 
sequences. However, there typically exist many possible sequences, which introduces the 
problem of search through a problem space. Such search can produce one or more 
sequences that solve the problem, but it also generate dead ends, loops, and other 
undesirable outcomes. Both successes and failures provide material for learning, in that 
they distinguish between desirable and undesirable choices, or at least suggest relative 
desirability.  

Research on learning from problem-solving traces occurs within a three broad 
paradigms. Some work focuses on learning local search-control knowledge for selecting, 
rejecting, or preferring actions or states. This knowledge may be cast as control rules or 
some related symbolic representation, or it may be stated as a numeric evaluation 
function. The latter approach is closely related to methods for estimating value functions 
from delayed reward, which has occasionally been used for tasks like scheduling (Zhang 
& Dietterich, 1995) and integrated circuit layout (Boyan & Moore, 2000).  Another 
paradigm emphasizes the formation from solution paths of macro-operators that take 
larger steps through the problem space in order to reduce the effective depth of search.  A 
third framework, analogical problem solving, also stores large-scale structures, but 
utilizes them in a more flexible manner by adapting them to new problems. 

For example, one might apply any of these approaches to tasks like network routing 
and configuration. Such an application would require some model of the effects that 
individual choices would produce, so that the agent can decide whether a given state is 
desirable before actually generating it in the world.  Thus, the system would start with the 
ability to generate routes or configurations, but it might do this very inefficiently if the 
search space is large. After repeated attempts at routing or configuration, it would acquire 
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heuristic knowledge about how to direct its search, letting it produce future solutions 
much more efficiently without loss in quality. 

A final formulation involves the empirical optimization of a complex system. 
Consider the problem of adjusting a chemical plant's parameters to improve its 
performance (e.g., reduce energy consumption, reduce waste products, increase product 
quality, increase rate of production, and so forth). If a predictive model of the plant is not 
available, the only recourse may be to try various settings of the parameters and see how 
the plant responds.    

One example of this idea, response surface methodology (Myers & Montgomery, 
1995) attempts to find the optimal operating point of a system by measuring system 
behavior at various points. The classic method executes a classical experiment design 
(e.g., some form of factorial design) about the current operating point and fits the results 
with a quadratic function to estimate the local shape of the objective function surface. 
Then it chooses a new operating point at the optimum of that quadratic surface and 
repeats the process.  

Machine learning researchers have studied methods that make weaker assumptions 
and require fewer training examples. One approach (Moore et al., 1998) employs 
regression to analyze the results of previous experiments and determine a region of 
interest in which the objective function can be approximated well, then chooses a new 
test point that is distant from other test points while still lying within this region. An 
alternative approach (Baluja & Caruana, 1995) is more appropriate for searching discrete 
parameter spaces such as those that arise in network configuration. Given a set of 
parameter settings (configurations) for which the performance has been measured, one 
fits a probability distribution to predict where additional ``good'' points are located, then 
samples a new set of configurations according to that distribution, measures their 
performance, and continues until convergence. 

Before closing, it is worth making two other points about learning for action 
selection and planning.  First, in many domains, sensing requires active invocation, so 
that one can view it as a kind of action.  Thus, an agent can learn policies for sensing, say 
to support efficient network diagnosis, just as it can for effectors, such as closing down a 
link in response to a suspected attack.  Second, some methods for plan learning assume 
the availability of action models that describe the expected effects when actions are 
invoked.  This leads in turn to the task of learning such action models from observations.  
This has many similarities to the problem of classification and regression learning, but 
aims to support higher-level learning about policies for acting and planning.  

B2.3 Learning for Interpretation and Understanding 
A third formulation focuses on learning knowledge that lets one interpret and 

understand situations or events.  Classification can be seen as a simple example of this 
idea, since one can `understand' an instance as being an example of some class. However, 
more sophisticated approaches attempt to interpret observations in a more constructive 
manner, by combining a number of separate knowledge elements to explain them. The 
key difference is that classification and regression are content with models that make 
accurate predictions, whereas interpretive approaches require models that explain the data 
in terms of deeper structures.  This process of explanation generation is often referred to 
as abduction. 
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The explanatory or abductive approach is perhaps most easily demonstrated in 
natural language processing, where a common performance task involves parsing 
sentences using a context-free grammar or some related formalism.  Such a grammar 
contains rewrite rules that refer to nonterminal symbols for types of phrases and parts of 
speech, and a parse tree specifies how one can derive or explain a sentence in terms of 
these rules. One can apply similar ideas to other domains, including the interpretation and 
diagnosis of network behavior. For example, given anomalous data about the transfer 
rates between various nodes in a network, one might explain these observations using 
known processes, such as demand for a new movie that is available at one site and 
desired by others. 

One can state a number of different learning tasks within the explanatory framework. 
The most tractable problem assumes that each training case comes with an associated 
explanation cast in terms of domain knowledge. This formulation is used commonly 
within the natural language community, where the advent of `tree banks' has made 
available large corpora of sentences with their associated parse trees.  The learning task 
involves generalizing over the training instances to produce a model that can be used to 
interpret or explain future test cases.  Naturally, this approach places a burden on the 
developer, since it requires hand construction of explanations for each training case, but it 
greatly constrains the learning process, as it effectively decomposes the task into a set of 
separate classification or density estimation tasks, one for each component of the domain 
knowledge. 

A second class of learning task assumes that training instances do not have 
associated explanations, but provides background knowledge from which the learner can 
construct them. This problem provides less supervision than the first, since the learner 
must consider alternative explanations for each training case and decide which ones are 
appropriate. However, the result is again some model that can be applied to interpret or 
explain future instances. This formulation is less burdensome on the developer, since he 
need not provide explanations for each training case, but only a domain theory from 
which the learner can construct them itself. Flann and Dietterich (1989) have referred to 
this learning task as induction over explanations, but it is also closely related to some 
work on constructive induction (Drastal et al., 1989). 

A final variant on learning for understanding provides training cases with neither 
explanations nor background knowledge from which to construct them. Rather, the 
learner must induce its own explanatory structures from regularities in the data, which it 
can then utilize to interpret and understand new test instances. An example from natural 
language involves the induction of context-free grammars, including both nonterminal 
symbols and the rewrite rules in which they occur, from legal training sentences (Stolcke 
& Omohundro, 1994). Clearly, this task requires even less effort on the developer's part, 
but places a greater challenge on the learning system.  This approach has gone by a 
variety of names in the machine learning literature, including term generation, 
representation change, and constructive induction (though this phrase has also been used 
for the second task). 

Because learning tasks that produce explanatory models are generally more difficult 
than those for classification and regression, some researchers have formulated more 
tractable versions of them. One variant assumes the qualitative structure of the 
explanatory model is given and that learning involves estimating numeric parameters 
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from the data. Examples of this approach include determining the probabilities in a 
stochastic context-free grammar, tuning the parameters in sets of differential equations, 
and inferring conditional probabilities in a Bayesian network.  Another variation, known 
as theory revision, assumes an initial explanatory model that is approximately correct and 
utilizes training data to alter its qualitative structure. Examples include revising Horn 
clause programs from classified training cases, improving sets of equations from 
quantitative data, and altering grammars in response to training sentences. 

B2.4 Summary of Problem Formulations 
In summary, one can formulate machine learning tasks in a variety of ways. These 

differ in both the manner in which learned knowledge is utilized and, at a finer level, in 
the nature of the training data that drives the learning process.  Table B1 summarizes the 
main formulations that have been discussed in this section. However, it is important to 
realize that different paradigms have received different degrees of attention within the 
machine learning community. Supervised approaches to classification and regression 
have been the most widely studied by far, with reinforcement learning being the second 
most common. Yet their popularity in the mainstream community does not imply they are 
the best ways to approach problems in computer networking, and research on the 
Knowledge Plane should consider all the available options. 
 

Table B1: Summary of Machine Learning Problem Formulations 
 

Formulation Performance Task 
Classification and regression Predict y given x 

Predict rest of x given part of x 
Predict P(x) given x 

Acting and planning Iteratively choose action a in state s 
Choose actions ‹a1,…,an› to achieve goal g 
Find setting s to maximize objective J(s) 

Interpretation and understanding Parse data stream into tree structure of objects 
or events 

 
 

Another important point is that one can often formulate a given real-world problem 
as a number of quite different learning tasks.  For example, one might cast diagnosis of 
network faults as a classification problem that involves assigning the current network 
state to either a normal condition or one of a few prespecified faulty conditions. 
However, one could instead formulate it as a problem of understanding anomalous 
network behavior, say in terms of unobservable processes that, taken together, can 
explain recent statistics. Yet another option would be to state diagnosis as a problem of 
selecting active sensors that narrow down alternatives. Each formulation suggests 
different approaches to the diagnostic task, to learning knowledge in support of that task, 
and to criteria for evaluating the success of the learning component.   
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B3. Tasks in Cognitive Networking 
The vision for the Knowledge Plane (Clark, 2002; Partridge, 2003) describes a 

number of novel capabilities for computer networks. This section reviews three 
capabilities that the vision assumes in terms of the cognitive functionalities that are 
required. These include anomaly detection and fault diagnosis, responding to intruders 
and worms, and rapid configuration of networks. 

B3.1 Anomaly Detection and Fault Diagnosis 
Current computer networks require human managers to oversee their behavior and 

ensure that they deliver the services desired. To this end, the network managers must 
detect unusual or undesirable behaviors, isolate their sources, diagnose the fault, and 
repair the problem.  These tasks are made more challenging because large-scale networks 
are managed in a distributed manner, with individuals having access to information 
about, and control over, only portions of the system. Nevertheless, it will be useful to 
examine the activities in which a single network manager engages.  

The first activity, anomaly detection, involves the realization that something unusual 
or undesirable is transpiring within the network. One possible approach to this problem, 
which applies recent advances in Bayesian networks, is to formulate it as a density 
estimation problem. Individual components, larger regions of the network, or, at some 
level, the entire internet could be modeled as the joint probability distribution of various 
quantities (queue lengths, traffic types, round-trip-times, and so on). An anomaly is 
defined as a low probability state of the network. 

Another possible approach is sometimes called one-class learning or learning a 
characteristic description of a class.  A classifier can be learned that attempts to find a 
compact description that covers a target percentile (e.g., 95%) of the ``normal'' traffic.  
Anything classified as ``negative'' by this classifier can then be regarded as an anomaly.  

There are several issues that arise in anomaly detection.  First, we must choose the 
level of analysis and the variables to monitor for anomalies.  This may involve first 
applying methods for interpreting and summarizing sensor data.  In the Knowledge Plane, 
one can imagine having whole hierarchies of anomaly detectors looking for changes in 
the type of network traffic (e.g., by protocol type), in routing, in traffic delays, in packet 
losses, in transmission errors, and so on.   Anomalies may be undetectable at one level of 
abstraction but easy to detect at a different level.  For example, a worm might escape 
detection at the level of a single host, but be detectable when observations from several 
hosts are combined. 

The second issue is the problem of false alarms and repeated alarms. Certain kinds of 
anomalies may be unimportant, so network managers need ways of training the system to 
filter them out.  Supervised learning methods could be applied to this problem. 

The second activity, fault isolation, requires the manager to identify the locus of an 
anomaly or fault within the network. For example, if a certain route has an especially 
heavy load, this may be due to changes at a single site along that route rather than to 
others. Hence, whereas anomaly detection can be performed locally (e.g., at each router), 
fault isolation requires the more global capabilities of the Knowledge Plane to determine 
the scope and extent of the anomaly. 

The activity of diagnosis involves drawing some conclusions about the cause of the 
anomalous behavior. Typically, this follows fault isolation, although in principle one 
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might infer the presence of a specific problem without knowing its precise location. 
Diagnosis may involve the recognition of some known problems; say one the network 
manager has encountered before, or the characterization of a new problem that may 
involve familiar components.   

Supervised learning methods can be applied to allow a network manager to teach the 
system how to recognize known problems.  This could be a prelude to automatically 
solving them, as discussed below.  

Both fault isolation and diagnosis may require active measurements to gather 
information.  For example, an anomaly found at a high level of aggregation would 
typically require making more detailed observations at finer levels of detail to understand 
the cause.  In the ``Why?'' scenario, one can imagine active probes of both the local 
computer (e.g., its configuration) and the internet (e.g., ``pings'' to see if the destination is 
reachable and up).  Diagnosis usually must balance the cost of gathering information 
against the potential informativeness of the action.  For example, if the ping succeeds, it 
requires little time, but otherwise it can take much longer to time out.  If our goal is to 
diagnose the problem as quickly as possible, then ping might be a costly action to 
perform. (Recent work in an area known as ``cost-sensitive learning'' addresses this 
tradeoff between cost and informativeness.) 

Fault isolation and diagnosis also typically require models of the structure of the 
system under diagnosis.  Much recent effort in network research has sought to provide 
better ways of understanding and visualizing the structure of the internet.  Machine 
learning for interpretation could be applied to help automate this process.  The resulting 
structural and behavioral models could then be used by model-based reasoning methods 
to perform fault isolation and diagnosis.  

Once a network manager has diagnosed a problem, he is in a position to repair it. 
However, there may exist different courses of action that would eliminate the problem, 
which have different costs and benefits. Moreover, when multiple managers are involved 
in the decision, different criteria may come into play that leads to negotiation. Selecting a 
repair strategy requires knowledge of available actions, their effects on network behavior, 
and the tradeoffs they involve. 

Supervised learning methods could be applied to learn the effects of various repair 
actions.  Methods for learning in planning could be applied to learn repair strategies (or 
perhaps only to evaluate repair strategies suggested by a human manager).  There may be 
some opportunity here for ``collaborative filtering'' methods that would provide an easy 
way for managers to share repair strategies.  

As stated, the `Why' problem (Clark, 2002; Partridge, 2003) requires diagnosis of an 
isolated fault, but one can imagine variations that involve answering questions about 
anomalies, fault locations, and actions taken to repair the system. Each of these also 
assumes some interface that lets the user pose a specific question in natural language or, 
more likely, in a constrained query language. Defining the space of Why questions the 
Knowledge Plane should support is an important research task that deserves attention 
early in the research program. 

B3.2 Responding to Intruders and Worms 
Responding to intruders (human, artificial, or their combination) and keeping 

networks and applications safe encompasses a collection of tasks that are best explained 
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depending on the time at which they are performed by a network manager.  We can group 
them into tasks that occur before, during or after the occurrence of an intrusion, as the 
temporal model in Figure 15 depicts. 

 
Figure 15 - : Time axis model of incident prevention, detection, and response tasks. 

 
Prevention Tasks. Network managers try to minimize the likeliness of future intrusions 
by constantly auditing the system and eliminating threats beforehand.  A network 
manager proactively performs security audits testing the computer systems for 
weaknesses—vulnerabilities or exposures.  However scan tools (i.e., Nessus, Satan, and 
Oval) used for penetration or vulnerability testing only recognize a limited number of 
vulnerabilities given the ever increasing frequency of newly detected possibilities for 
breaking into a computer system or disturbing its normal operation.  Thus, network 
managers continuously update scan tools with new plug-ins that permit them to measure 
new vulnerabilities.  Once the existence of a vulnerability or exposure is perceived, 
network managers assess the convenience of discontinuing the service or application 
affected until the corresponding patch or intrusion detection signature is available.  A 
tradeoff between risk level and service level is made in every assessment. 

Network managers aim at shrinking the window of vulnerability, the time gap 
between when a new vulnerability or exposure is discovered and a preventing solution 
(patch, new configuration, etc.) is provided, as much as possible.  A basic strategy to 
accomplish that objective is based on two conservative tasks: first, minimizing the 
number of exposures (i.e., disable unnecessary or optional services by configuring 
firewalls to allow only the use of ports that are necessary for the site to function) and, 
second, increasing awareness of new vulnerabilities and exposures (i.e., the subscription 
model that Partridge discusses with relation to worms). 

Finally, network managers continuously monitor the system so that pre-intrusion 
behavioral patterns can be understood and used for further reference when an intrusion 
occurs. Monitoring is an ongoing, preventive task. 
 
Detection Tasks.  The sooner an intrusion is detected, the more chances there are for 
impeding an unauthorized use or misuse of the computer system.  Network managers 
monitor computer activities at different levels of detail: system call traces, operating 
system logs, audit trail records, resource usage, network connections, etc.  Normally, they 
constantly try to fuse and correlate real-time reports and alerts stemming from different 
security devices (e.g., firewalls and intrusion detection systems) to stop suspicious 
activities before they have a negative impact (i.e., degrading or disrupting operations).  
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Different sources of evidence are valuable given the evolving capabilities of intruders to 
elude security devices.  The degree of suspicion and malignancy associated to each report 
or alert still requires continuous human oversight. Consequently, network managers are 
continually overwhelmed with a vast amount of log information and bombarded with 
countless alerts.  To deal with this onslaught, network managers often tune security 
devices to provide an admissible number of false alerts even though this increases the risk 
of not detecting real intrusions. 

The time at which an intrusion is detected directly affects the level of damage that an 
intrusion causes.  An objective of network managers is to reduce the window of 
penetrability, the time span that initiates when a computer system has been broken into 
and extends until the damage has been completely repaired.  The correct diagnosis of an 
intrusion allows a network manager to initiate the most convenient response.  However, a 
tradeoff between quality and rapidness is made in every diagnostic.   
 
Response and Recovery Tasks.  As soon as a diagnostic on an intrusion is available, 
network managers initiate a considered response.  This response tries to minimize the 
impact on the operations (i.e., do not close all ports in a firewall if only blocking one IP 
address is enough).  Network managers try to narrow the window of compromisibility of 
each intrusion—the time gap that starts when an intrusion has been detected and ends 
when the proper response has taken effect—deploying automatic intrusion response 
systems.  Nevertheless, these systems are still at an early stage and even fail at providing 
assistance in manual responses.  Therefore, network managers employ a collection of ad-
hoc operating procedures that indicate how to respond and recover from a type of 
intrusion.  The responses to an attack range from terminating a user job or suspending a 
session to blocking an IP address or disconnecting from the network to disable the 
compromised service or host.  Damage recovery or repairing often entails maintaining 
the level of service while the system is being repaired, which makes this process difficult 
to automate.     Once the system in completely recovered from an intrusion, network 
managers collect all possible data to thoroughly analyze the intrusion, trace back what 
happened, and evaluate the damage.  Thus, system logs are continuously backed up.  The 
goal of post-mortem analysis is twofold.  On the one hand, it gathers forensic evidence 
(contemplating different legal requirements) that will support legal investigations and 
prosecution and, on the other hand, it compiles experience and provides documentation 
and procedures that will facilitate the recognition and repelling of similar intrusions in the 
future. 

Ideally, the ultimate goal of a network manager is to make the three windows 
(vulnerability, penetrability, and compromisibility) of each possible intrusion converge 
into a single point in time.  Tasks for responding to intruders (human, artificial or a 
combination of both) should not differ significantly from those tasks needed to recover 
from non-malicious errors or failures.    

B3.3 Network Configuration and Optimization 
Network configuration and optimization can be viewed as an instance of the general 

problem of designing and configuring a system.  In this section, we review the space of 
configuration problems and briefly describe the methods that have been developed in AI 
and machine learning to solve these problems. 
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B3.3.1 A Spectrum of Configuration Tasks 
The problem of the design and configuration of engineered systems has been studied 

in artificial intelligence since the earliest days (Tonge, 1963).  Configuration is generally 
defined as a form of routine design from a given set of components or types of 
components (i.e., as opposed to designing the components themselves).  As such, there is 
a spectrum of configuration problems of increasing difficulty, as shown in Table B2. 
The simplest task is parameter selection, where values or chosen for a set of global 
parameters in order to optimize some global objective function.  Two classic examples 
are the task of setting the temperature, cycle time, pressure, and input/output flows of a 
chemical reactor and the task of controlling the rate of cars entering a freeway and the 
direction of flow of the express lanes.  If a model of the system is known, this becomes 
purely an optimization problem, and many algorithms have been developed in operations 
research, numerical analysis, and computer science to solve such problems. 

The second task is compatible parameter selection.  Here, the system consists of a set 
of components that interact with one another to achieve overall system function 
according to a fixed topology of connections.  The effectiveness of the interactions is 
influenced by parameter settings which must be compatible in order for sets of 
components to interact.  For example, a set of hosts on a subnet must agree on the 
network addresses and subnet mask in order to communicate using IP.  Global system 
performance can depend in complex ways on local configuration parameters.  Of course, 
there may also be global parameters to select as well, such as the protocol family to use. 

The third task is topological configuration.  Here, the system consists of a set of 
components, but the topology must be determined. For example, given a set of hosts, 
gateways, file servers, printers, and backup devices, how should the network be 
configured to optimize overall performance?  Of course, each proposed topology must be 
optimized through compatible parameter selection. 

Finally, the most general task is component selection and configuration.  Initially, the 
configuration engine is given a catalog of available types of components (typically along 
with prices), and it must choose the types and quantities of components to create the 
network (and then, of course, solve the Topological Configuration problem of arranging 
these components). 
 

Table B2: Configuration tasks in increasing order of complexity 
 

Problem: 
Global 

parameters 
Local 

parameters Topology Components 
Global parameter configuration XX    
Compatible parameter configuration XX XX   
Topological configuration XX XX XX  
Component selection and configuration XX XX XX XX 

 

B3.3.2 The Reconfiguration Process 
The discussion thus far has dealt only with the problem of choosing a configuration.  

However, a second aspect of configuration is determining how to implement the 
configuration efficiently.  When a new computer network is being installed (e.g., at a 
trade show), the usual approach is to install the gateways and routers; then the file and 
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print servers; and finally individual hosts, network access points, and the like.  The 
reason for this is that this order makes it easy to test and configure each component and it 
minimizes the amount of re-work.  Automatic configuration tools (e.g., DHCP) can 
configure the individual hosts if the servers are in place first. 

A different challenge arises when attempting to change the configuration of an 
existing network, especially if the goal is to move to the new configuration without 
significant service interruptions.  Most configuration steps require first determining the 
current network configuration, and then planning a sequence of reconfiguration actions 
and tests to move the system to its new configuration.  Some steps may cause network 
partitions that prevent further (remote) configuration. Some steps must be performed 
without knowing the current configuration (e.g., because there is already a network 
partition, congestion problem, or attack). 

B3.3.3 Existing AI/ML Work on Configuration 
Parameter Selection.  As we discussed above, parameter selection becomes optimization 
(possibly difficult, non-linear optimization) if the model of the system is known.  
Statisticians have studied the problem of empirical optimization in which no system 
model is available. 
 
Compatible Parameter Configuration. The standard AI model of compatible parameter 
configuration is known as the constraint satisfaction problem (CSP).  This consists of a 
graph where each vertex is a variable that can take values from set of possible values and 
each edge encodes a pair-wise constraint between the values of the variables that it joins.  
A large family of algorithms has been developed for finding solutions to CSPs efficiently 
(Kumar, 1992).  In addition, it is possible to convert CSPs into Boolean satisfiability 
problems, and very successful randomized search algorithms, such as WalkSAT (Selman 
et al., 1993), have been developed to solve these problems. 

The standard CSP has a fixed graph structure, but this can be extended to include a 
space of possible graphs and to permit continuous (e.g., linear algebraic) constraints.  The 
field of constraint logic programming (CLP; Jaffar & Maher, 1994) has developed 
programming languages based on ideas from logic programming that have a constraint 
solver integrated as part of the run-time system.  The logic program execution can be 
viewed as conditionally expanding the constraint graph, which is then solved by the 
constraint system.  Constraint logic programming systems have been used to specify and 
solve many kinds of configuration problems. 

To our knowledge, there has been no work on applying machine learning to help 
solve compatible parameter configuration problems.  There is a simple form of learning 
that has been applied to CSPs called “no good learning”, but it is just a form of caching to 
avoid wasting effort during CSP search.  There are many potential learning problems 
including learning about the constraints relating pairs of variables and learning how to 
generalize CSP solutions across similar problems. 
 
Topological Configuration. Two principal approaches have been pursued for 
topological configuration problems: refinement and repair.  Refinement methods start 
with a single ``box'' that represents the entire system to be configured.  The box has an 
attached formal specification of its desired behavior.  Refinement rules analyze the 
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formal specification and replace the single box with two or more new boxes with 
specified connections.  For example, a small office network might initially be specified as 
a box that connects a set of workstations, a file server, and two printers to a DSL line.  A 
refinement rule might replace this box with a local network (represented as a single box 
connected to the various workstations and servers) and a router/NAT box.  A second 
refinement rule might then refine the network into a wireless access point and a set of 
wireless cards (or alternatively, into an Ethernet switch and a set of Ethernet cards and 
cables).  There has been some work on applying machine learning to learn refinement 
rules in the domain of VLSI design (Mitchell et al., 1985). 

The repair-based approach to topological configuration starts with an initial 
configuration (which typically does not meet the required specifications) and then makes 
repairs to transform the configuration until it meets the specifications.  For example, an 
initial configuration might just connect all computers, printers, and other devices to a 
single Ethernet switch, but this switch might be very large and expensive.  A repair rule 
might replace the switch with a tree of smaller, cheaper switches.  Repair-based 
approaches make sense when the mismatch between specifications and the current 
configuration can be traced to local constraint violations.  A repair rule can be written 
that ``knows how'' to repair each kind of violation. Repair-based methods have been very 
successful in solving scheduling problems (Zweben et al., 1994). 

Machine learning approaches to repair-based configuration seek to learn a heuristic 
function h(x) that estimates the quality of the best solution reachable from configuration x 
by applying repair operators. If h has been learned correctly, then a hill climbing search 
that chooses the repair giving the biggest improvement in h will lead us to the global 
optimum.  One method for learning h is to apply reinforcement learning techniques. 
Zhang and Dietterich (1995) learned heuristics for optimizing space shuttle payload 
scheduling; Boyan and Moore (2000) learned heuristics for configuring the functional 
blocks on integrated circuit chips. 

In both refinement and repair-based methods, constraint satisfaction methods are 
typically applied to determine good parameter values for the current proposed 
configuration.  If no satisfactory parameter values can be found, then a proposed 
refinement or repair cannot be applied, and some other refinement or repair operator must 
be tried.  It is possible for the process to reach a dead end, which requires backtracking to 
some previous point or restarting the search. 
 
Component Selection and Configuration. The refinement and repair-based methods 
described above can also be extended to handle component selection and configuration.  
Indeed, our local network configuration example shows how refinement rules can 
propose components to include in the configuration.  Similar effects can be produced by 
repair operators. 
 
Changing Operating Conditions. The methods discussed so far only deal with the 
problem of optimizing a configuration under fixed operating conditions. However, in 
many applications, including networking, the optimal configuration may need to change 
as a result of changes in the mix of traffic and the set of components in the network.  This 
raises the issue of how data points collected under one operating condition (e.g., one 
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traffic mix) and be used to help optimize performance under a different operating 
condition. To our knowledge, there is no existing research on this question. 

B4. Open Issues and Research Challenges 
Most research in the field of machine learning has been motivated by problems in 

pattern recognition, robotics, medical diagnosis, marketing, and related commercial areas.  
This accounts for the predominance of supervised classification and reinforcement 
learning in current research.  The networking domain requires several shifts in focus and 
raises several exciting new research challenges, which we discuss in this section. 

B4.1 From Supervised to Autonomous Learning 
As we have seen above, the dominant problem formulation in machine learning is 

supervised learning, where a ``teacher'' labels the training data to indicate the desired 
response.  While there are some potential applications of supervised learning in KP 
applications (e.g., for recognizing known networking misconfigurations and intrusions), 
there are many more applications for autonomous learning that does not require a teacher.  
In particular, many of the networking applications require looking for anomalies in real-
time data streams, which can be formulated as a combination of unsupervised learning 
and learning for interpretation. 

Anomaly detection has been studied in machine learning, but usually it has 
considered only a fixed level of abstraction.  For networking, there can be anomalies at 
the level of individual packets, but also at the level of connections, protocols, traffic 
flows, and network-wide disturbances.  A very interesting challenge for machine learning 
is to develop methods that can perform simultaneous unsupervised learning at all of these 
levels of abstraction.  At very fine levels of detail, network traffic is constantly changing, 
and therefore, is constantly novel.  The purpose of introducing levels of abstraction is to 
hide unimportant variation while exposing important variation. 

Anomaly detection at multiple levels of abstraction can exploit regularities at these 
multiple levels to ensure that the anomaly is real.  A similar idea—multi-scale analysis—
has been exploited in computer vision, where it is reasonable to assume that a real pattern 
will be observable at multiple levels of abstraction.  This helps reduce false alarms.  

B4.2 From Off-Line to On-Line Learning 
Most applications of machine learning involve off-line approaches, where data is 

collected, manually labeled, and then provided to the learning algorithm in a batch 
process.  KP applications involve the analysis of real-time data streams, and this poses 
new challenges and opportunities for learning algorithms. 

In the batch framework, the central constraint is usually the limited amount of 
training data.  In contrast, in the data stream setting, new data is available at every time 
instant, so this problem is less critical.  (Nonetheless, even in a large data stream, there 
may be relatively few examples of a particular phenomenon of interest, so the problem of 
sparse training data is not completely eliminated.) 

Moreover, the batch framework assumes that the learning algorithm has essentially 
unlimited amounts of computing time to search through the space of possible knowledge 
structures. In the on-line setting, the algorithm can afford only a fixed and limited amount 
of time to analyze each data point. 
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Finally, in the batch framework, the criterion to be minimized is the probability of 
error on new data points.  In the on-line framework, it makes more sense to consider the 
response time of the system.  How many data points does it need to observe before it 
detects the relevant patterns?  This can be reformulated as a mistake-bounded criterion: 
how many mistakes does the system make before it learns to recognize the pattern? 

B4.3 From Fixed to Changing Environments 
Virtually all machine learning research assumes that the training sample is drawn 

from a stationary data source—the distribution of data points and the phenomena to be 
learned are not changing with time.  This is not true in the networking case.  Indeed, the 
amount of traffic and the structure of the network are changing continuously.  The 
amount of traffic continues to rise exponentially and new autonomous systems are added 
to the internet almost every day.  New networking applications (including worms and 
viruses) are introduced frequently.  

Research in machine learning needs to formalize new criteria for evaluating of 
learning systems in order to measure success in these changing environments.  A major 
challenge is to evaluate anomaly detection systems, because by definition they are 
looking for events that have never been seen before.  Hence, they cannot be evaluated on 
a fixed set of data points, and measures are needed to quantify the degree of novelty of 
new observations. 

B4.4 From Centralized to Distributed Learning 
Another important way in which KP applications differ from traditional machine 

learning problems is that, in the latter, it has usually been possible to collect all of the 
training data on a single machine and run the learning algorithm over that data collection. 
In contrast, a central aspect of the Knowledge Plane is that it is a distributed system of 
sensors, anomaly detectors, diagnostic engines, and self-configuring components. 

This raises a whole host of research issues.  First, individual anomaly detectors can 
form models of their local traffic, but they would benefit from important traffic models 
learned elsewhere in the KP.  This would help them detect a new event the first time they 
see it, rather than having to be exposed multiple times before the event pattern emerges. 

Second, some events are inherently distributed patterns of activity that cannot be 
detected at an individual network node.  The research challenge here is to determine what 
kinds of statistics can be collected at the local level and pooled at the regional or global 
level to detect these patterns.  This may involve a bi-directional process of information 
exchange in which local components report summary statistics to larger-scale “think 
points”.  These think points detect a possible pattern that requires additional data to 
verify.  So they need to request the local components to gather additional statistics.  
Managing this bi-directional statistical reasoning is an entirely new topic for machine 
learning research. 

B4.5 From Engineered to Constructed Representations 
An important ingredient in the success of existing learning systems is the careful 

engineering of the attributes describing the training data. This “feature engineering” 
process is not well understood, but it involves combining background knowledge of the 
application domain with knowledge about learning algorithms.  To illustrate this, 
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consider a very simple example in networking arises in intrusion detection: Rather than 
describing network traffic using absolute IP addresses, it is better to describe packets 
according to whether they share the same or different IP addresses.  This ensures that the 
learned intrusion detector is not specific to a single IP address but instead looks for 
patterns among a set of packets sharing a common address, regardless of the absolute 
value of the address. 

A critical challenge for machine learning is to develop more automatic ways of 
constructing the representations given to the learning algorithms.  This requires making 
explicit the design principles currently used by human data analysts.  

B4.6 From Knowledge-Lean to Knowledge-Rich Learning 
An important factor influencing the development of machine learning has been the 

relative cost of gathering training data versus building knowledge bases.  The 
constructing and debugging of knowledge bases is a difficult and time-consuming 
process, and the resulting knowledge bases are expensive to maintain.  In contrast, there 
are many applications where training data can be gathered fairly cheaply.  This is why 
speech recognition and optical character recognition systems have been constructed 
primarily from training data.  Any normal adult human is an expert in speech recognition 
and optical character recognition, so it is easy for them to label data points to training a 
learning system.  

There are other domains (including networking), where there are very few experts 
available, and their time is perhaps better employed in developing formal representations 
of the knowledge they possess about network architectures and configurations.  This is 
particularly true in the area of network diagnosis and configuration, where experts can 
help construct models of network components and prescribe rules for correct 
configuration.  This raises the challenge of how to combine training data with human-
provided models and rules.  This should become an important goal for future machine 
learning research. 

B4.7 From Direct to Declarative Models 
Most machine learning systems seek to induce a function that maps directly from 

inputs to outputs and therefore requires little inference at run time.  In an optical character 
recognition system, for example, the learned recognizer takes a character image as input 
and produces the character name as output without any run-time inference.  We will call 
this “direct knowledge”, because the learned knowledge performs the task directly. 
However, as applications become more complex, a simple view of the performance 
element as a classifier (or direct decision maker) is no longer adequate.  Diagnosis and 
configuration tasks require a more complex performance element that makes a sequence 
of interacting decisions at run time.  These performance elements typically require 
declarative knowledge such as “what is the probability that misconfigured gateway will 
exhibit symptom X?” or “it is illegal to simultaneously select configuration options Y and 
Z.”  An important goal for machine learning is to learn these forms of declarative 
knowledge (i.e., knowledge that makes minimal assumptions about how it will be used by 
the performance element). 

Declarative knowledge is easier for people to understand, and it can be more easily 
combined with human-provided knowledge as well.  Hence, acquiring declarative 
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knowledge is an important challenge for machine learning in the context of the 
Knowledge Plane. 

B5. Challenges in Methodology and Evaluation 
Machine learning research has a long history of experimental evaluation, with some 

examples dating back to the 1960s, well before the field was a recognized entity. 
However, the modern experimental movement began in the late 1980s, when researchers 
realized the need for systematic comparisons (e.g., Kibler & Langley, 1988) and the first 
data repository was launched.  Other approaches to evaluation, including formal analysis 
and comparison to human behavior, are still practiced, but, over the past decade, 
experimentation has come to dominate the literature on machine learning, and we will 
focus on that approach in our discussions of cognitive networking. 

Experimentation involves the systematic variation of independent factors to 
understand their impact on dependent variables that describe behavior. Naturally, which 
dependent measures are most appropriate depends on the problem being studied. For fault 
diagnosis, these might involve the system's ability at infer the correct qualitative 
diagnosis, its ability to explain future network behaviors, and the time take to detect and 
diagnose problems. Similar measures seem appropriate for responding to intruders and 
worms, though these might also include the speed and effectiveness of response. For 
studies of configuration, the dependent variables might concern the time taken to 
configure a new system and the resulting quality, which may itself require additional 
metrics. Similarly, routing studies would focus on the efficiency and effectiveness of the 
selected routes.  

Note that these behavioral measures have nothing directly to do with learning; they 
are the same measures one would use to evaluate a nonlearning system and even the 
abilities of a human network manager. Because learning is defined as improvement in 
performance, we can only measure the effectiveness of learning in terms of the 
performance it aims to improve. Note also that the metrics mentioned above are quite 
vague, and they must be made operational before they can be used in experimental 
evaluations. In doing so, it may seem natural to use variables associated with one's 
selected formulation of the learning problem, such as predictive accuracy for 
classification or received reward for action selection. We should resist this temptation 
and instead utilize variables that measure directly what is desired from a networking 
perspective.  

An experimental study also requires the variation of one or more independent factors 
to determine their effects on behavior. In general, these can deal with:  

• the effects of experience, such as the number of observations available to the 
learning system; 

• the effects of data characteristics, such as the degree of noise or percentage of 
features missing;  

• the effects of task characteristics, such as the complexity of a  configuration 
problem or the number of simultaneous faults;  

• the effects of system characteristics, such as the inclusion of specific learning 
modules or sensitivity to parameter settings; and  

• the effects of background knowledge, such as information about network structure 
and bandwidth. 
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Again, which variables are appropriate will depend largely on the networking 
problem at hand and the specific learning methods being used. However, a full 
understanding of how machine learning can assist cognitive networking will require 
studies that examine each of the dimensions above.  

Of course, one cannot carry out experiments in the abstract. They require specific 
domains and problems that arise within them. To study the role of learning in network 
management, we need a number of testbeds that can foster the experimental evaluation of 
alternative approaches to learning. At least some of these should involve actual network, 
to ensure the collection of realistic data for training and testing the learning methods. 
However, these should be complemented with simulated networks, which have the 
advantage of letting one systematically vary characteristics of the performance task, the 
learning task, and the available data. Langley (1996) has argued that experiments with 
both natural and synthetic data are essential, since the former ensures relevance and the 
latter let one infer source of power and underlying causes. 

Much of the success of the last 15 years of machine learning research can be traced 
to the establishment of a collection of data sets at the University of California, Irvine 
(Murphy & Aha, 1994, Blake & Merz, 1998; Merz & Murphy, 1996). The UCI data sets 
provided a common set of problems on which to evaluate learning algorithms and greatly 
encouraged comparative studies. The data sets span a wide range of application problems 
ranging from basic science and medicine to optical character recognition and speech 
recognition. 

Ideally, we want an analog of this repository to enable the careful evaluation of 
machine learning in networking domains. However, because the Knowledge Plane 
envisions an adaptive network that learns about itself over time, it is important that this 
resource not be limited to static data sets, but also include simulated networks that allow 
learning methods, and their associated performance elements, to interact with the network 
environment in an on-line manner.
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